机器学习十大算法的每个算法的核心思想工作原理适用情况及优缺点.docVIP

机器学习十大算法的每个算法的核心思想工作原理适用情况及优缺点.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
机器学习十大算法的每个算法的核心思想工作原理适用情况及优缺点

简述机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点等。 1)C4.5算法: ID3算法是以HYPERLINK /view/15076.htm信息论为基础,以HYPERLINK /view/401605.htm信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。 C4.5算法核心思想是ID3算法,是ID3算法的改进,改进方面有: 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 在树构造过程中进行剪枝 能处理非离散的数据 能处理不完整的数据 C4.5算法优点:产生的分类规则易于理解,准确率较高。 缺点: 在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。 2)K means 算法: 是一个简单的聚类算法,把n的对象根据他们的属性分为k个分割,k n。 算法的核心就是要优化失真函数J,使其收敛到局部最小值但不是全局最小值。 ,其中N为样本数,K是簇数,rnk b表示n属于第k个簇,uk 是第k个中心点的值。 然后求出最优的uk 优点:算法速度很快 缺点是,分组的数目k是一个输入参数,不合适的k可能返回较差的结果。 3)朴素贝叶斯算法: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。算法的基础是概率问题,分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。朴素贝叶斯假设是约束性很强的假设,假设特征条件独立,但朴素贝叶斯算法简单,快速,具有较小的出错率。 在朴素贝叶斯的应用中,主要研究了电子邮件过滤以及文本分类研究。 4)K最近邻分类算法(KNN) 分类思想比较简单,从训练样本中找出K个与其最相近的样本,然后看这k个样本中哪个类别的样本多,则待判定的值(或说抽样)就属于这个类别。 缺点: K值需要预先设定,而不能自适应 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法适用于对样本容量比较大的类域进行自动分类。 5)EM最大期望算法 EM算法是基于模型的聚类方法,是在概率模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量 。E步估计隐含变量,M步估计其他参数,交替将极值推向最大。 EM算法比K-means算法计算复杂,收敛也较慢,不适于大规模数据集和高维数据,但比K-means算法计算结果稳定、准确。EM经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 PageRank算法 是google的页面排序算法,是基于从许多优质的网页链接过来的网页,必定还是优质网页的回归关系,来判定所有网页的重要性。(也就是说,一个人有着越多牛X朋友的人,他是牛X的概率就越大。) 优点: 完全独立于查询,只依赖于网页链接结构,可以离线计算。 缺点: PageRank算法忽略了网页有哪些信誉好的足球投注网站的时效性。 旧网页排序很高,存在时间长,积累了大量的in-links,拥有必威体育精装版资讯的新网页排名却很低,因为它们几乎没有in-links。 7)AdaBoost Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。 整个过程如下所示:   1. 先通过对N个训练样本的学习得到第一个弱分类器 ;   2. 将分错的样本和其他的新数据一起构成一个新的N个的训练样本,通过对这个样本的学习得到第二个弱分类器 ;   3. 将 和 都分错了的样本加上其他的新样本构成另一个新的N个的训练样本,通过对这个样本的学习得到第三个弱分类器 ;   4. 如此反复,最终得到经过提升的强分类器。 目前AdaBoost算法广泛的应用于人脸检测、目标识别等领域。 Apriori算法 Apriori算法是一种挖掘关联规则的算法,用于挖掘其内含的、未知的却又实际存在的数据关系,其核心是基于两阶段频集思想的递推算法 。 Apriori算法分为两个阶段: 寻找频繁项集 由频繁项集找关联规则 算法缺点: 在每一步产生侯选项目集时循环产生的组合过多,没有排除不应该参与组合

文档评论(0)

haihang2017 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档