模式识别聚类算法和线性判别算法.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
模式识别聚类算法和线性判别算法

Pattern Classification;Male-Female;Male-Female;;1.2 Hierarchical clustering; 1.3 Function;C-means clustering:;Simulation Result of C-means clustering ;Simulation Result of C-means clustering ;;Simulation Result of Hierarchical clustering;Simulation Result of Hierarchical clustering;1.5 Effect of initial value of different clustering on clustering results;;2.1 Linear decision ;2.1 Linear decision ; Source Program of RandQ ;Source Program of Linear decision ;Simulation Result of Linear decision ;Simulation Result of Linear decision ;Program description: Pdist function is used to calculate the distance between each?other, and then the linkage function is used to establish the hierarchical structure tree. By comparing the classification results, the least error algorithm is selected for the class of inner square distance. The final call cluster function, the structure of the tree to cluster, determine the final category. ;2.2 Hierarchical clustering ; 2.linkage Z=linkage(Y,‘method’) Input value Description: Y for the return of the pdist function M* (M-1) /2 elements of the row vector, using the method parameter specified algorithm to calculate the system clustering tree. Method: can be valued as follows : ‘single’:最短距离法(默认); ‘complete’:最长距离法; ‘average’:未加权平均距离法; ‘weighted’: 加权平均法; ‘centroid’:质心距离法; median’:加权质心距离法; ‘ward’:内平方距离法(最小方差算法);3.cluster T=cluster(Z,…) Description: according to the output of linkage function Z to create classification.;load feature_table; W=feature_table; Dist=pdist(W); %计算两两对象之间的距离 Tree=linkage(Dist,ward); %建立层次化的结构树(类内平方距离最小误差) class=cluster(Tree,3); %聚类 class_1=find(class==1); %第一类 class_2=find(class==2); %第二类 class_3=find(class==3); %第三类 n1=size(class_1); n2=size(class_2); n3=size(class_3); ;By clustering: Background error probability (sample as the background, misjudged other) err_bg = 0.0420;

文档评论(0)

dajuhyy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档