- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第5章多重共线性(计量经济学南开大学)
我们关于经典线性回归模型(CLRM)有如下假定: 假定1:回归模型对参数是线性的 假定2:在重复抽样中X的值是固定的(非随机) 假定3:干扰项的均值为零。即,E(ui|Xi)=0 假定4:同方差性或ui的方差相等。即 Var(ui|Xi)=E[ui-E(ui)|Xi]2 = E(ui2|Xi]2 = ?2 假定5:各个干扰项无自相关。即 Cov(ui,uj|Xi,Xj)=E[ui-E(ui|Xi) ][uj-E(uj|Xj)] = E(ui|Xi)(uj|Xj) = 0 假定6:ui和Xi的协方差为零。即 Cov(ui,Xi) = E[ui – E(ui)][ Xi – E(Xi)] = E[ui (Xi – E(Xi))] =E(ui Xi) – E(ui)E(Xi) = E(ui Xi) = 0 假定7:观测次数必须大于待估计的参数个数。 假定8:解释变量X的只要有变异性。即一个样本中,Xi不能完全相同。 假定9:模型没有设定误差。 假定10:没有完全的多重共线性,即解释变量之间没有完全的线性关系。 在现实中,以上假定不一定得到满足。本章讨论某些假定不成立时的估计问题。;第二节 多重共线性(multi-collinearity);第三节 多重共线性的影响 一、完全多重共线性 以两个解释变量的回归模型为例,假定回归模型为:; 如果X2与X3存在完全共线性,即 则:;二、不完全多重共线性 假定X2,X3 间存在不完全多重共线性, 以离差形式表示为: 。 其中vi 为随机项。则; 显然,当解释变量X2、X3 之间的相关系数 r23 的绝对值越大,共线性程度就越高,参数估计值的方差就越大,越不准确,且随着相关系数的增大,方差以更大的幅度增加。; 在双边量回归模型中,可以直接对解释变量的相关系数进行显著性检验,以确定线性相关的程度(此时相关系数的平方等于样本决定系数)。而对于多于两个结束变量的回归模型,则不能利用俩俩相关系数来检验。 对于有多个变量的回归模型,可以采用辅助回归的方法,分别以k-1个解释变量中的第i个对其他变量进行回归,可得到k-2个回归方程的判定系数: R22,R32,…,Rk2。假定这些判定系数中Rj2最大且接近1,则变量Xj 与其他解释变量中的一个或多个有较高相关程度,因此回归方程出现高度多重共线性。 可以进行F检验确定其显著性: 根据第三章的结果,检验R2显著性的F检验值为???;二、解决多重共线性的方法 如果发现监视变量之间存在高度得多重共线性,就必须消除这种多重共线性的影响,保证模型的正确性和估计的有效性。有以下几种解决方法。 1、除去不重要的变量 把回归模型中引起多重共线性,而对因变量的影响不大的变量。但是变量的剔除可能导致模型的设定偏误。; 已知X2 和X3 之间高度共线。根据先验信息,确定β3=2β2,带入模型后可得:;3、变换模型的形式 如果作为解释变量的某些经济变量间出现高度相关,而进行回归分析的目的是为了预测,不是研究单个经济变量对因变量的影响时,可以根据实际问题,改变模型模型的形式。 4、增加样本容量 如果多重共线性是由样本引起,增加样本容量可以减少多重共线性的程度。以二元回归方程为例,根据第二节的结果,参数估计值的方差为:; 例如,为了估计汽车需求的价格弹性和收入弹性,得到销售量、平均价格、消费者收入的时间序列数据。设定回归式:
文档评论(0)