Discovery of Climate Patterns from Global Data Sets Science Goal Understand global scale pa.pdfVIP

Discovery of Climate Patterns from Global Data Sets Science Goal Understand global scale pa.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Discovery of Climate Patterns from Global Data Sets Science Goal Understand global scale pa

? Vipin Kumar NSF – October 10, 2007 Vipin Kumar University of Minnesota kumar@ /~kumar Collaborators: Chris Potter Michael Steinbach, Shyam Boriah NASA Ames University of Minnesota Steve Klooster Pang-Ning Tan California State University, Monterey Bay Michigan State University Research funded by ISET-NOAA, NSF and NASA Discovery of Patterns in the Global Climate System using Data Mining ? Vipin Kumar NSF – October 10, 2007 1 Science Goal: Understand global scale patterns in biosphere processes Earth Science Questions: – When and where do ecosystem disturbances occur? – What is the scale and location of human- induced land cover change and its impact? – How are ocean, atmosphere and land processes coupled? Data sources: – Weather observation stations – High-resolution EOS satellites 1982-2000 AVHRR at 2.5° x 2.5° resolution, 2000-present MODIS at 250m x 250m resolution – Model-based data from forecast and other models – Data sets created by data fusion Discovery of Climate Patterns from Global Data Sets Earth Observing System Monthly Average Temperature ? Vipin Kumar NSF – October 10, 2007 2 Computer Science Challenges  Spatio-temporal nature of data – Traditional data mining techniques do not take advantage of spatial and temporal autocorrelation.  Scalability – Size of Earth Science data sets has increased 6 orders of magnitude in 20 years, and continues to grow with higher resolution data. – Grid cells have gone from a resolution of 2.5° x 2.5° (10K points for the globe) to 250m x 250m (15M points for just California; about 10 billion for the globe)  High-dimensionality – Long time series are common in Earth Science ? Vipin Kumar NSF – October 10, 2007 3 Detection of Ecosystem Disturbances Goal: Detection of sudden changes in greenness over extensive land areas due to ecosystem disturbances.  Physical: hurricanes, fires, floods, droughts, ice storms  Biogenic: insects, mammals, pathogens  Anthropogenic: logging, drainage of wetlands, chemi

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档