Discourse generation using utility-trained coherence models.pdfVIP

Discourse generation using utility-trained coherence models.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Discourse generation using utility-trained coherence models

Discourse Generation Using Utility-Trained Coherence Models Radu Soricut Information Sciences Institute University of Southern California 4676 Admiralty Way, Suite 1001 Marina del Rey, CA 90292 radu@ Daniel Marcu Information Sciences Institute University of Southern California 4676 Admiralty Way, Suite 1001 Marina del Rey, CA 90292 marcu@ Abstract We describe a generic framework for inte- grating various stochastic models of dis- course coherence in a manner that takes advantage of their individual strengths. An integral part of this framework are algo- rithms for searching and training these stochastic coherence models. We evaluate the performance of our models and algo- rithms and show empirically that utility- trained log-linear coherence models out- perform each of the individual coherence models considered. 1 Introduction Various theories of discourse coherence (Mann and Thompson, 1988; Grosz et al., 1995) have been applied successfully in discourse analy- sis (Marcu, 2000; Forbes et al., 2001) and dis- course generation (Scott and de Souza, 1990; Kib- ble and Power, 2004). Most of these efforts, how- ever, have limited applicability. Those that use manually written rules model only the most visi- ble discourse constraints (e.g., the discourse con- nective “although” marks a CONCESSION relation), while being oblivious to fine-grained lexical indi- cators. And the methods that utilize manually an- notated corpora (Carlson et al., 2003; Karamanis et al., 2004) and supervised learning algorithms have high costs associated with the annotation pro- cedure, and cannot be easily adapted to different domains and genres. In contrast, more recent research has focused on stochastic approaches that model discourse coher- ence at the local lexical (Lapata, 2003) and global levels (Barzilay and Lee, 2004), while preserving regularities recognized by classic discourse theo- ries (Barzilay and Lapata, 2005). These stochas- tic coherence models use simple, non-hierarchical repr

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档