Discovery in Databases or KDD (Piatesky-.pdfVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Discovery in Databases or KDD (Piatesky-

10 May 2002 Roberto Innocente 1 Data mining: rule mining algorithms Roberto Innocente rinnocente@ 10 May 2002 Roberto Innocente 2 Introduction /1 Data mining also known as Knowledge Discovery in Databases or KDD (Piatesky- Shapiro 1991), is the process of extracting useful hidden information from very large databases in an unsupervised manner. 10 May 2002 Roberto Innocente 3 Introduction /2 Central themes of data mining are: Classification Cluster analysis Associations analysis Outlier analysis Evolution analysis 10 May 2002 Roberto Innocente 4 ARM /1 (association rules mining)  Formally introduced in 1993 by Agrawal, Imielinski and Swami (AIS) in connection with market basket analysis  Formalizes statements of the form: What is the percentage of customers that together with cheese buy beer ? 10 May 2002 Roberto Innocente 5 ARM /2  We have a set of items I={i1,i2,..}, and a set of transaction T={t1,t2..}. Each transaction (like a supermarket bill) is a set of items (or better as it is called an itemset)  If U and V are disjoint itemsets, we call support of U=V the fraction of transactions that contain U ∪ V and we indicate this with s(U=V)  We say that an itemset is frequent if its support is greater than a chosen threshold called minsupp.  If A and B are disjoint itemsets, we call confidence of A=B and indicate with c(A=B), the fraction of transactions containing A that contain also B. This is also called the Bayesian or conditional probability p(B|A).  We say that a rule is strong if its confidence is greater than a threshold called minconf. 10 May 2002 Roberto Innocente 6 ARM /3 ARM can then be formulated as: Given a set I of items and a set T of transactions over I, produce in an automated manner all association rules that are more than x% frequent and more than y% strong. 10 May 2002 Roberto Innocente 7 ARM /4 On the right we have 6 transactions T={1,2,3,4,5,6} on a set of 5 items I={A,B,C,D,E} The itemset BC is present

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档