- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Data Quality Mining – Making a Virtue of Necessity
DATA QUALITY MINING
– Making a Virtue of Necessity –
Jochen Hipp
DaimlerChrysler AG, Research Technology, Ulm, Germany
Wilhelm-Schickard-Institute, University of Tu?bingen, Germany
Email: jochen.hipp@
Ulrich Gu?ntzer
Wilhelm-Schickard-Institute, University of Tu?bingen, Germany
Email: guentzer@informatik.uni-tuebingen.de
Udo Grimmer
DaimlerChrysler AG, Research Technology, Ulm, Germany
Email: udo.grimmer@
Abstract
In this paper we introduce data quality mining (DQM) as a new and promising data mining approach from
the academic and the business point of view. The goal of DQM is to employ data mining methods in order to
detect, quantify, explain and correct data quality deficiencies in very large databases. Data quality is crucial for
many applications of knowledge discovery in databases (KDD). So a typical application scenario for DQM is to
support KDD projects, especially during the initial phases. Moreover, improving data quality is also a burning
issue in many areas outside KDD. That is, DQM opens new and promising application fields for data mining
methods outside the field of pure data analysis. To give a first impression of a concrete DQM approach, we
describe how to employ association rules for the purpose of DQM.
1 MOTIVATION
Since the early nineties knowledge discovery in
databases (KDD) has developed to a well established
field of research. Over the years new methods to-
gether with scalable algorithms have been developed
to efficiently analyze even very large datasets. How-
ever, KDD has not been broadly established outside
academia. Although there are numerous success sto-
ries of practical applications today many of the peo-
ple concerned with KDD seem to be somehow disil-
lusioned. “Crossing the chasm” as Rakesh Agrawal
formulates in (Agrawal, 1999) is overdue. Other-
wise KDD might end like many promising technolo-
gies that were welcomed enthusiastically but finally
missed to satisfy the expectations they generated.
The research community is aware t
您可能关注的文档
- Communication by Extracellular Vesicles Where We Are and Where We Need to Go.pdf
- Commercial High-Efficiency Silicon Solar Cells.pdf
- Community Prosecution Strategies Measuring Impact.pdf
- COMNAV-NEMA0183.pdf
- Comparative Staging of Embryo Development.pdf
- COMP5318 Knowledge Discovery and Data Mining_2011 Semester 1_week7EM_dimred.pdf
- Comparator Countries A Comparison.pdf
- Comparing machine learning and knowledge discovery in databases an application to knowledge.pdf
- comparison adjectives 形容词比较级pdf.pdf
- comparatives-superlatives.pdf
- Data scheduling on processor-in-memory arrays based on data placement and data movement.pdf
- DATABASE IMPLEMENTATION FOR SERBIAN REPUBLIC WATER MANAGEMENT AUTHORITY.pdf
- database of DNA profiles.pdf
- Datapath Scheduling using Dynamic Frequency Clocking.pdf
- db2 system Commands.pdf
- DB33-T 756.3-2009 车用甲醇汽油 第3部分:M50(浙江).pdf
- DBA 课程_全球支持.pdf
- DCM2012-900-2P共模电感规格书.pdf
- DBL_5310_en_2011-09.pdf
- DCDC转换电路在光伏发电MPPT中的应用.pdf
文档评论(0)