A Convolutional Neural Network for Modelling Sentences.pdfVIP

A Convolutional Neural Network for Modelling Sentences.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
A Convolutional Neural Network for Modelling Sentences

A Convolutional Neural Network for Modelling Sentences Nal Kalchbrenner Edward Grefenstette {nal.kalchbrenner, edward.grefenstette, phil.blunsom}@cs.ox.ac.uk Department of Computer Science University of Oxford Phil Blunsom Abstract The ability to accurately represent sen- tences is central to language understand- ing. We describe a convolutional architec- ture dubbed the Dynamic Convolutional Neural Network (DCNN) that we adopt for the semantic modelling of sentences. The network uses Dynamic k-Max Pool- ing, a global pooling operation over lin- ear sequences. The network handles input sentences of varying length and induces a feature graph over the sentence that is capable of explicitly capturing short and long-range relations. The network does not rely on a parse tree and is easily ap- plicable to any language. We test the DCNN in four experiments: small scale binary and multi-class sentiment predic- tion, six-way question classification and Twitter sentiment prediction by distant su- pervision. The network achieves excellent performance in the first three tasks and a greater than 25% error reduction in the last task with respect to the strongest baseline. 1 Introduction The aim of a sentence model is to analyse and represent the semantic content of a sentence for purposes of classification or generation. The sen- tence modelling problem is at the core of many tasks involving a degree of natural language com- prehension. These tasks include sentiment analy- sis, paraphrase detection, entailment recognition, summarisation, discourse analysis, machine trans- lation, grounded language learning and image re- trieval. Since individual sentences are rarely ob- served or not observed at all, one must represent a sentence in terms of features that depend on the words and short n-grams in the sentence that are frequently observed. The core of a sentence model involves a feature function that defines the process The cat sat on the red mat The cat sat on the red

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档