- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
libsvm的opition
libsvm在训练model的时候,有如下参数要设置,当然有默认的参数,但是在具体应用方面效果会大大折扣。
Options:可用的选项即表示的涵义如下 -s svm类型:SVM设置类型(默认0) 0 -- C-SVC 1 --v-SVC 2 – 一类SVM 3 -- e -SVR 4 -- v-SVR
-t 核函数类型:核函数设置类型(默认2) 0 – 线性:uv 1 – 多项式:(r*uv + coef0)^degree 2 – RBF函数:exp(-gamma|u-v|^2) 3 –sigmoid:tanh(r*uv + coef0)
-d degree:核函数中的degree设置(针对多项式核函数)(默认3) -g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/ k) -r coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0) -c cost:设置C-SVC,e -SVR和v-SVR的参数(损失函数)(默认1) -n nu:设置v-SVC,一类SVM和v- SVR的参数(默认0.5) -p p:设置e -SVR 中损失函数p的值(默认0.1) -m cachesize:设置cache内存大小,以MB为单位(默认40) -e eps:设置允许的终止判据(默认0.001) -h shrinking:是否使用启发式,0或1(默认1) -wi weight:设置第几类的参数C为weight*C(C-SVC中的C)(默认1) -v n: n-fold交互检验模式,n为fold的个数,必须大于等于2 其中-g选项中的k是指输入数据中的属性数。option -v 随机地将数据剖分为n部
当构建完成model后,还要为上述参数选择合适的值,方法主要有Gridsearch,其他的感觉不常用,Gridsearch说白了就是穷举。
网格参数寻优函数(分类问题):SVMcgForClass[bestCVaccuracy,bestc,bestg]= SVMcgForClass(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)输入:train_label:训练集的标签,格式要求与svmtrain相同。train:训练集,格式要求与svmtrain相同。cmin,cmax:惩罚参数c的变化范围,即在[2^cmin,2^cmax]范围内寻找最佳的参数c,默认值为cmin=-8,cmax=8,即默认惩罚参数c的范围是[2^(-8),2^8]。gmin,gmax:RBF核参数g的变化范围,即在[2^gmin,2^gmax]范围内寻找最佳的RBF核参数g,默认值为gmin=-8,gmax=8,即默认RBF核参数g的范围是[2^(-8),2^8]。v:进行Cross Validation过程中的参数,即对训练集进行v-fold Cross Validation,默认为3,即默认进行3折CV过程。cstep,gstep:进行参数寻优是c和g的步进大小,即c的取值为2^cmin,2^(cmin+cstep),…,2^cmax,,g的取值为2^gmin,2^(gmin+gstep),…,2^gmax,默认取值为cstep=1,gstep=1。accstep:最后参数选择结果图中准确率离散化显示的步进间隔大小([0,100]之间的一个数),默认为4.5。输出:bestCVaccuracy:最终CV意义下的最佳分类准确率。bestc:最佳的参数c。bestg:最佳的参数g。
网格参数寻优函数(回归问题):SVMcgForRegress[bestCVmse,bestc,bestg]= SVMcgForRegress(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)其输入输出与SVMcgForClass类似,这里不再赘述。
而当你训练完了model,在用它做classification或regression之前,应该知道model中的内容,以及其含义。
用来训练的是libsvm自带的heart数据
model = ? ? Parameters: [5x1 double]? ?? ?nr_class: 2? ?? ? totalSV: 259 ? ? ? ? ? ? ? ? ? %?支持向量的数目? ?? ?? ???rho: 0.0514 ? ? ? ? ? ? ? % ?b? ?? ?? ?La
您可能关注的文档
最近下载
- 2025年一建《建设工程项目管理》课件 .pdf VIP
- 《基础数学(第1册)》电子教案全册.pdf VIP
- 气血疏通中级班讲义.pdf VIP
- 台湾农民的退休制度.docx VIP
- 夫妻关系讲座课件.pptx
- (人教版)初中九年级化学上册第五单元《化学方程式》综合复习测试训练试题卷(附答案详解).docx VIP
- 1_东南营小学体育课教案水平一潘建元2(1)-体育1至2年级全一册教案.docx VIP
- 人教版2025秋小学数学三年级教学设计已知一个数的几倍是多少,求这个数.pdf VIP
- 人教版2025秋小学数学三年级教学设计求一个数的几倍是多少.pdf VIP
- 酒店前台UPSELL培训教学课件.pptx VIP
文档评论(0)