基于微泡的飞行稳定性研究作业.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于微泡的飞行稳定性研究作业

第1章 绪论 1.1微型机电系统的发展状况 微机电系统(MEMS, Micro-Electro-Mechanic System)是一种先进的制造技术平台。它是以半导体制造技术为基础发展起来的。MEMS技术采用了半导体技术中的光刻、腐蚀、薄膜等一系列的现有技术和材料,因此从制造技术本身来讲,MEMS中基本的制造技术是成熟的。但MEMS更侧重于超精密机械加工,并要涉及微电子、材料、力学、化学、机械学诸多学科领域。它的学科面也扩大到微尺度下的力、电、光、磁、声、表面等物理学的各分支 [1]。   微机电系统是微电路和微机械按功能要求在芯片上的集成,尺寸通常在毫米或微米级,自八十年代中后期崛起以来发展极其迅速,被认为是继微电子之后又一个对国民经济和军事具有重大影响的技术领域,将成为21世纪新的国民经济增长点和提高军事能力的重要技术途径[2]。   微机电系统的优点是[3]:体积小、重量轻、功耗低、耐用性好、价格低廉等优点。、性能稳定等。微机电系统的出现和发展是科学创新思维的结果,使微观尺度制造技术的演进与革命。微机电系统是当前交叉学科的重要研究领域,涉及电子工程、材料工程、机械工程、信息工程等多项科学技术工程,将是未来国民经济和军事科研领域的新增长点。   MEMS(微机电系统)最初大量用于汽车安全气囊,而后以MEMS传感器的形式被大量应用在汽车的各个领域,随着MEMS技术的进一步发展,以及应用终端“轻、薄、短、小”的特点,对小体积高性能的MEMS产品需求增势迅猛,消费电子、医疗等领域也大量出现了MEMS产品的身影[4][5]。   MEMS的特点是:   1)微型化:MEMS器件重量轻、体积小、惯性小、耗能低、响应时间短、谐振频率高。   2)以硅为主要材料,硅的热传导率接近钼和钨,密度类似铝,强度、硬度和杨氏模量与铁相当,具有良好的机械电器性能。 硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。 3)批量生产:在一片硅片上可以利用硅微加工工艺制作成上百个或上千个完整的MEMS装置,大大降低了MEMS的制造成本。   4)集成化:可以把致动方向、不同功能或不同敏感方向的多个执行器或传感器集成于一体,或形成微执行器阵列、微传感器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。微电子器件、微执行器和微传感器的集成可制造出稳定性、可靠性很高的MEMS。   5)多学科交叉:MEMS涉及机械、制造、电子、材料、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多尖端成果。 MEMS的发展会开辟许多新技术领域和产业,由于其微型化、集成化会带来许多新原理、新功能元件和系统的探索,目前,形成使用的产品是一些微传感器、微执行器等微结构装置,这些产品能够到达人类以前无法进入的许多领域,对生物医学、机器人、汽车、航天、航空、军事等领域产生重大的影响,21世纪MEMS将走向实用化,因此未来发展的市场前景是十分宽广的。 1.2基于MEMS的微制动器 微致动器(Microactuator)又称微执行器或微驱动器,是能够产生和执行动作的一类微机械部件或器件的总称。微致动器是MEMS的重要组成部分,在微机械研究领域起到了不可替代的作用,微致动器的动作可以利用能量转换,将其他形式的能量转化为机械能,使其达到驱动的目的。 微致动器的动作可以利用多种物理效应实现,常用的执行方式有压力效应、电磁效应、热效应和静电效应。例如,压电式马达或超声马达可以通过两马达材料之间产生的逆压电效应技术实现,微气泡制动器的凸起可以通过压力效应技术实现,磁性驱动器可以通过电磁效应技术实现。除此之外,光制动、超导制动、凝胶等高分子制动、超声波制动、行波制动、电液制动等技术也在微致动器领域得到应用,下表1.1列出了应用较广的几种微致动器制动类型和特点[6]。 表1.1 微型机械不同制动方式特点 制动类型 压力 行程(位移) 相应时间 可靠性耐久性 压电 大 小 快 好 静电 小 很小 很快 很好 电磁 小 大 快 好 热气动 大 一般 一般 好 双金属 大 一般 一般 足够 压力:很大(),大(), 一般(),小() 行程:大(),一般(),小(),很小() 响应时间:很快(),快(),一般(),慢() 各种致动方式的对应的典型致动器如表1.2所示[7]。 表1.2 微制动器及其制动方式 制动方式 典型器件 压电 微泵、微阀、磁盘驱动器伺服系统 静电 微电机、微闸、微镜、微扫描器、微继电器 电磁 微继电器、微泵、微阀 热膨胀 微阀、微夹持器 热气动 微泵、微阀、打印机喷头 形状记忆 微阀、光纤开关 电磁微执行方法是静电、压电和磁的执行方法,自从集成电路工艺提供导电和绝缘材料的广泛选择范围之后,静

文档评论(0)

panguoxiang + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档