Characterization of tool-workpiece contact during the micromachining of conductive materials.pdfVIP

Characterization of tool-workpiece contact during the micromachining of conductive materials.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Characterization of tool-workpiece contact during the micromachining of conductive materials.pdf

Mechanical Systems and Signal Processing 83 (2017) 489–505 Contents lists available at ScienceDirect Mechanical Systems and Signal Processing journal homepage: /locate/ymssp Characterization of tool-workpiece contact during the micromachining of conductive materials Fernando Casta?o n, Rodolfo E. Haber, Raúl M. del Toro Centre for Automation and Robotics (UPM-CSIC), Arganda del Rey, Madrid, Spain article info Article history: Received 6 August 2015 Received in revised form 14 June 2016 Accepted 16 June 2016 Available online 30 June 2016 Keywords: Micromachining Micro-milling Tool-piece contact area modeling Spreading resistance abstract The characterization of dynamic cutting in micro-machining operations is essential for real-time monitoring of tool performance. The analysis of tool-edge/material contact and its electrical resistivity is therefore an interesting avenue of research for monitoring toolworkpiece interaction. This study examines mechanical cutting operations in micromilling operations that remove material to meet the design requirements of conductive parts. It draws from previous research into the theoretical models of cutting mechanisms in milling operations, to present a mathematical characterization of the tool-edge/material contact area. The rationale behind this research is that the contact area between two conductive materials is one of the main factors in determining the magnitude of resistance to the flow of an electric current between both materials. The study also offers a theoretical analysis of tool-edge radial immersion angles on entry and exit and their dynamic behavior. The analysis is mainly centered on cutting operations and cutting-time intervals, where tool-material contact is intermittent. Our theoretical analysis is experimentally corroborated by measuring tool-edge immersion time and tool-edge/material contact time. Promising results are reported that contribute to the development of a technological method for high-precision, real

您可能关注的文档

文档评论(0)

2752433145 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档