- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
钽基合金抗高温氧化研究进展.doc
钽基合金抗高温氧化研究进展 摘 要:钽基合金由于高熔点和良好的高温强度成为航天航空领域高温结构零件的重要候选材料之一,但抗高温氧化性能差是制约其应用的关键问题。该文从合金化、晶粒细化和高温涂层3个方面综述了钽基合金抗高温氧化的防护方法,并分析了目前研究中面临的问题。 关键词:钽基合金 抗高温氧化 合金化 晶粒细化 涂层 中图分类号:TG174.442 文献标识码:A 文章编号:1672-3791(2016)03(c)-0150-03 Abstract:Ta-based alloys offer great potential as important materials of construction in space field due to their high melting points and excellent general mechanical properties.But,the biggest problem to restrain their application is their poor oxidation resistance at elevated temperatures.This paper reviews the current oxidation resistant protection technologies of Ta-based alloys in the following aspects:alloying effect,grain refinement and coating techniques.And it analyzes the existing problems in the current research. Key Words:Ta-based alloy;High-temperature oxidation-resistent;Alloying;Grain refinement;Coating 随着我国航天航空事业的快速发展,发动机的工作温度不断升高,这对于高温结构材料的要求也日益苛刻,寻找一种在1 800 ℃ 及其以上高温环境中稳定工作的耐超高温材料已成为材料研究人员的工作方向。 钽属ⅤB族难熔金属,熔点高达3 033 ℃,密度为16.68 g/cm3,晶格类型:体心立方,导热系数(25 ℃)54W/M?K,线膨胀系数(0~100 ℃)6.5×10-6,耐蚀性能良好,不仅有优异的机械性能、稳定的物理化学性质,而且高温力学性能良好。钽基合金的优良特性使其成为了航天航空领域及其重要的高温结构候选材料。 但是,钽基合金自身抗氧化性能较差,600 ℃就开始发生氧化,随着氧化层的不断增厚,氧化物与金属界面之间产生的内应力会使氧化层开裂导致脱落,随后不断发生再次氧化、脱落,形成灾难性氧化。因此,改进钽基合金的抗高温氧化性能具有十分重要的意义[1-6]。 1 通过合金化提高抗高温氧化性能 查阅文献可知提高钽基合金抗高温氧化性能的元素主要有Cr、Ti和Si及各种稀土元素等,其中Si是提高钽基合金抗高温氧化性能最重要的元素。 添加少量Cr时,合金表面的氧化膜内层可形成尖晶石型氧化物,对提高抗高温氧化性能有一定的改善作用;当添加量达到20%,会形成完整的Cr2O3膜,具有良好的抗氧化性能;但如果继续增加Cr的添加量,效果反而越来越差。 Ti与O的亲和力很大,在空气或氧化性气氛中,钛表面会生成一层致密的、附着力强的、惰性大的TiO2氧化膜,保护基体不被氧化。当Ti的添加量达到25at%时,可以将氧的扩散率减小到原来的1/10。 Si是提高钽基合金抗高温氧化性能最常用的元素。通过氧化形成SiO2膜在各种气氛中都具有优异的抗氧化性能,可以有效地阻止氧向钽基合金内部的扩散,而且SiO2玻璃在高温下有一定的流动性,具备自愈合能力,并且能够承受一定的机械变形,是最常用的添加元素。 另外,在钽基合金中加入稀土元素如La、Ce、Y等,也能够有效改善抗高温氧化性能,添加量一般在1at%以下;当以稀土氧化物的形式添加时,其添加量一般为1%~3%。稀土或稀土氧化物作为活性元素,可以增强氧化膜与基体的粘结力,从而提高其抗高温氧化的性能[8-12]。 2 晶粒细化改善抗高温氧化性能 合金的抗氧化性能与显微组织,尤其是晶粒的大小有很大关系。当合金成分确定以后,晶粒尺寸的影响就显得尤为重要。细化晶粒的方法有表面喷丸、冷轧、激光处理和快速凝固等,均可提高钽基合金的抗高温氧化性能。晶粒细化一般通过两种机制来提高合金的抗氧化性能:(1)通过改善氧化膜的粘附性,使其不与基体发生相互的扩散;(2)通过晶界扩散发生选
文档评论(0)