bayes_770.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
bayes_770bayes_770

Methods WinBUGS code used for the Cannell and leaf datasets (both contained data on all four traits: r, l, M, and A). The WinBUGS code used for the Sonoran data is a slightly modified (or simplified) version of the following code because the Sonora data only included data on three traits (r, l, and M). model { # Loop through each observation i in the dataset: for(i in 1:N){ # Create data matrix by repeating observed data 6 times, for each of the six models. # The data are read-in in a file that contains the variables LogLength = log(l), LogMass = # log(M), and logArea = log(A). Put all data in the data vector Y, which is equivalent to the # observation vector for [log(l) log(M) log(A)] in eqn (2) in the main text. for(m in 1:6){ Y[i,m,1] - LogLength[i] Y[i,m,2] - LogMass[i] Y[i,m,3] - LogArea[i] } # The likelihood (sampling distribution for loglength, logmass, logarea) is a # multivariate normal distribution with mean mu and precision matrix Omega. # Note, the text refers to the covariance matrix, Sigma, but WinBUGS parameterizes # the normal distribution in terms of a precision matrix.The data are Y[,,1] = loglength; # Y[,,2] = logmass; Y[,,3] = logarea. Allow the mean and precision to vary by model m. # If models 1 (elastic) or 2 (stress), only use LogLength LogArea, Y[i,m,1:2] and use # the mean mu12 and precision matrix Omega12; for the other models, use all three # variables, Y[i,m,1:3], and use the mean mu and the precision matrix Omega for(m in 1:2){ # Multivariate normal likelihood for first 2 scaling models: Y[i,m,1:2] ~ dmnorm(mu12[i,m,1:2], Omega12[m,1:2,1:2]) # Define replicated data, Yrep12, for each model Yrep12[i,m,1:2] ~ dmnorm(mu12[i,m,1:2], Omega12[m,1:2,1:2]) for(k in 1:2){ # Compute squared difference (or squared error) for posterior # predictive loss calculation: sqdiff12[i,m,k] - pow(Yrep12[i,m,k] - Y[i,m,k],2) # Replicated data on regu

文档评论(0)

skewguj + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档