信号与数据稀疏性建模重点.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
* * The evolution of the data Model Signal Models Smooth Piecewise smooth Smooth with point singularities ? Signal model: a mathematical description of the behavior we expect from a “good” (uncontaminated ) signal in our system Machine Learning * Mathematics Signal Processing New Emerging Models Sparseland and Example-Based Models Wavelet Theory Signal Transforms Multi-Scale Analysis Approximation Theory Linear Algebra Optimization Theory Denoising Compression Inpainting Blind Source Separation Demosaicing Super-Resolution * The Sparseland Model Task: model image patches of size 10×10 pixels. We assume that a dictionary of such image patches is given, containing 256 atom images. The Sparseland model assumption: every image patch can be described as a linear combination of few atoms. α1 α2 α3 Σ * The Sparseland Model/Transform We start with a 10-by-10 pixels patch and represent it using 256 numbers – This is a redundant representation. However, out of those 256 elements in the representation, only 3 are non-zeros – This is a sparse representation. Bottom line in this case: 100 numbers representing the patch are replaced by 6 (3 for the indices of the non-zeros, and 3 for their entries). Properties of this model: Sparsity and Redundancy. α1 α2 α3 Σ * Problems With Sparseland Sparse and Redundant Representations Theory Numerical Problems Applications (image processing) * Difficulties With Sparseland Problem 1: Given an image patch, how can we find its atom decomposition ? A simple example: There are 2000 atoms in the dictionary The signal is known to be built of 15 atoms possibilities If each of these takes 1nano-sec

文档评论(0)

6669930 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档