- 1、本文档共43页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
摘 要
交通管理及交通安全问题正受到人们越来越多的关注。在此背景下,智能交通系统的概念应运而生。作为智能交通系统的一部分,交通标志检测系统在驾驶辅助、交通标志维护、自动驾驶等多方面具有重要作用。然而,真实交通场景复杂多变,光照条件、天气条件、局部遮挡、背景色相似干扰、阴影干扰等问题使交通标志检测系统的研究远未达到成熟卷积神经网络是将人工神经网络和深度学习技术结合而产生的一个新型人工神经网络方法,具有局部感知区域、层次结构化、特征抽取和分类过程结合的全局训练等特点,在图像检测领域获得了广泛的应用。
本文在对人工神经网络特别是卷积神经网络的基本概念和算法进行了总结和介绍的基础上,以经典的卷积神经网络模型为基础,将其应用到交通标志检测任务当中。检测的路标类型包括警告、禁止、指示等交通标志,其中分别含有不同的前景背景颜色及形状。首先,我们采用图像分割技术,将目标图片分割成许多小区域,然后将这些区域一次输入到已经训练好的神经网络中去,由此可以得知目标图像中是否含有路标。
关键字:交通标志检测图像分割卷积神经网络
ABSTRACT
Traffic regulation and safety problem is getting more and more attentioUnder this background, the concept of Intelligent Transportation System(ITS) is presented. As a component of ITS, the traffic sign detection system plays an important role in driver assistance, traffic sign maintaining and automatically driving. However, in the complicated traffic scenes, the problems of different lighting condition, weather condition, partial occlusion, similar background color and shadow interfering make the research of traffic sign detection far from mature. Convolutional Neural Networks (CNN) is a technology that combines ANN and recent Deep Learning method, which is characterized by local receptive field, hierarchical structure, global learning for feature extraction and classification, has been applied to many image detection tasks.
In this paper, we first give a thoroughly introduction on the basic concepts of ANN and CNN, based on the classic CNN, we apply it to the task of traffic sign detection. Detection types include warning signs, prohibition signs, direction signs, and each type has a different background color and foreground shapes .First, we use image segmentation to divide image into many small target areas, then we thrown these areas into the neural network which has been trained , so we can judge whether the detecting image has a traffic sign in it. By this method, we can detect traffic signs in complex environments without extracting features first. This method is robust, comprehensive and researcha
文档评论(0)