模式识别0剖析.pptVIP

  1. 1、本文档共41页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
模式识别原理 华中科技大学图像识别与人工智能研究所 图像分析与智能系统研究室 曹治国 Density Estimation Basic idea: Probability that a vector x will fall in region R is: P is a smoothed (or averaged) version of the density function p(x) if we have a sample of size n; therefore, the probability that k points fall in R is then: and the expected value for k is: E(k) = nP (3) If Then Therefore, the ratio k/n is a good estimate for the probability P and hence for the density function p. p(x) is continuous and that the region R is so small that p does not vary significantly within it, we can write: where is a point within R and V the volume enclosed by R. Combining equation (1) , (3) and (4) yields: Density Estimation (cont.) Justification of equation (4) We assume that p(x) is continuous and that region R is so small that p does not vary significantly within R. Since p(x) = constant, it is not a part of the sum. Where: ?(R) is: a surface in the Euclidean space R2 a volume in the Euclidean space R3 a hypervolume in the Euclidean space Rn Since p(x) ? p(x’) = constant, therefore in the Euclidean space R3: Condition for convergence The fraction k/(nV) is a space averaged value of p(x). p(x) is obtained only if V approaches zero. This is the case where no samples are included in R: it is an uninteresting case! In this case, the estimate diverges: it is an uninteresting case! The volume V needs to approach 0 anyway if we want to use this estimation Practically, V cannot be allowed to become small since the number of samples is always limited One will have to accept a certain amount of variance in the ratio k/n Theoretically, if an unlimited number of samples is available, we can circumvent this difficulty To estimate the density of x, we form a sequence of regions R1, R2,…containing x: the first region contains one sample, the second two samples and so on. Let Vn be the volume of Rn, kn the number

文档评论(0)

麻将 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档