有限元的弱形式资料.docxVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
PDE弱形式介绍 GJ:看到一个介绍COMSOL解决物理问题弱形式的文档,感觉很牛啊,通过COMSOL Multiphysics的弱形式用户界面来求解更多更复杂的问题,这绝对是物理研究的利器啊!而且貌似COMSOL是唯一可以直接使用弱形式来求解问题的软件。 为什么要理解PDE方程的弱形式? 一般情况下,PDE方程都已经内置在COMSOL Multiphysics的各个模块当中,这种情况下,没有必要去了解PDE方程和及其相关的弱形式。有时候可能问题是没有办法用COMSOL Multiphysics内置模块来求解的,这个时候可以使用经典PDE模版。但是,有时候可能经典PDE模版也不包括要求解的问题,这个时候就只能使用弱形式了(虽然这种情况是极少数的)。另一个原因就是弱形式有时候描述问题比PDE方程紧凑的多。还有,如果你是一个教授去教有限元分析方法,可以帮助学生们直接利用弱形式来更深入的了解有限元。最后,你对有限元方法了解的越多,对于COMSOL中的一些求解器的高级设置就懂得更多。 一个重要的事实是:在所有的应用模式和PDE模式求解的时候,COMSOL Multiphysics都是先将方程式系统转为了弱形式,然后进行求解。 物理问题的三种描述方式 偏微分方程 能量最小化形式 弱形式 PDE问题常常具有最小能量问题的等效形式,这让人有一种直觉,那就是PDE方程都可以有相应的弱形式。实际上这些PDE方程和能量最小值问题只是同一个物理方程的两种不同表达形式罢了,同样,弱形式(几乎)是同一个物理方程的第三个等效形式。我们必须记住,这三种形式只是求解同一个问题的三种不同形式――用数学方法求解真实世界的物理现象。根据不同的需求,这三种方式又有各自不同的优点。 三种不同形式的求解 PDE形式在各种书籍中比较常见,而且一般都提供了PDE方程的解法。能量法一般见于结构分析的文献中,采用弹性势能最小化形式求解问题是相当自然的一件事。当我们的研究范围超出了标准有限元应用领域,比如传热和结构,这个时候弱形式是不可避免的。化工中的传质问题和流体中的N-S方程都是没有办法用最小能量原理表述出来的。 弱形式的特点 PDE方程是带有偏微分算子的方程,而能量方程是以积分形式表达的。积分形式的好处就是特别适合于有限元方法,而且不用担心积分变量的不连续,这在偏微分方程中比较普遍。弱形式也是积分形式,拥有和积分形式同样的优点,但是他对积分变量的连续性要求更低,可以看作是能量最小化形式的更一般形式。最重要的是,弱形式非常适合求解非线性的多物理场问题,这就是COMSOL Multiphysics的重点了。 PDE到泛函变分 GJ:PDE方程一般很难求出解析解,通常需要根据变分原理(数学定律)或最小能量原理(物理定律)转化为泛函变分问题,即得到积分形式,从而便于使用有限元法划分区域离散化,得到刚度矩阵,而最终求解得到PDE的近似数值解。这基本上就是一般的工程中的有限元分析,如平面弹性力学问题、温度场分析及动力学问题等。平面弹性力学问题是通过最小势能原理或虚功原理(两者是同一问题的不同表述形式)建立积分泛函的,温度场可以通过能量法建立泛函,也可以通过变分原理裸建泛函。 下面说一说常见的PDE问题根据最小能量原理建立泛函变分。 弹性静力学PDE及其弹性能量方程 在静力结构分析问题中,我们需要求解的是Navier方程 其中σ是应力张量,F是体力,比如重力等。计算区域记为,其边界记为。 应力张量和应变张量之间的关系称为本构关系,线弹性本构一般遵循胡克HOOK定律 其中是弹性张量,这个关系式说明材料的行为实际上和弹簧差不多(前提是线弹性)。 最后,我们可以将应变矢量和位移的关系表述出来 这里u指的是位移矢量u=(u,v,w),其定义就是变形体上的材料点和未变形时候的位移差。 总结以上所有的方程,我们得到了一个二阶PDE方程(Navier方程), 需要一个边界条件来求解, 其中n是表面的法矢,P是边界上的面力或牵引力。 可以顺便提一下,这个PDE方程的弱形式为, 其中v=称为试函数。注意,尽管Navier方程是一个矢量表达式,但是上面的表达式是一个标量形式。 弹性势能 在结构分析中,PDE方程及其弱形式的表达式都不太常见,相反,能量最小化形式因为其直观的表达形式用的较多。这类问题的能量积分形式对应于总势能的最小化,即对象中存储的弹性能。 总弹性能是一个标量,可以写成: 弹性能表达式同样适用于非线性问题。在这些表达式中,我们假设体力F为零,并忽略了边界效应。这些影响可以在以后引入。积分的意义是每个体积微元的内能总和,其中应力张量单位是Pa,微元体上的应变dε没有单位,dV单位是体积,因此积分出来的单位应该是N·m。 如果问题是线弹性的,则可以显式的写为: 联立上

文档评论(0)

phljianjian + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档