CloudResearch(云服务)_13.docVIP

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
CloudResearch(云服务)_13.doc

Adapting MapReduce for Dynamic Environments Using a Peer-to-Peer Model Fabrizio Marozzo, Domenico Talia, Paolo Trunfio DEIS, University of Calabria, Via P. Bucci 41C, 87036 Rende, Italy fmarozzo@unical.it, ftalia,trunfiog@deis.unical.it Extended Abstract Introduction MapReduce is a programming model used for processing large data sets in a highly-parallel way [1]. Users specify the computation in terms of a “map” function that processes a key/value pair to generate a set of intermediate key/value pairs, and a “reduce” function that merges all intermediate values associated with the same intermediate key. MapReduce implementations (e.g., Google’s MapReduce [2] and Apache Hadoop [3]) are based on a master-slave model. A job is submitted by a user node to a master node that selects idle workers and assigns each one a map or a reduce task. When all map and reduce tasks have been completed, the master node returns the result to the user node. The failure of a worker is managed by re-executing its task on another worker, while master failures are not managed by current MapReduce implementations as designers consider failures unlikely in large clusters or in reliable Cloud environments. On the contrary, node failures (including master failures) can occur in large clus-ters and Clouds and are likely to happen in dynamic environments, like computa-tional Grids and volunteer computing systems, where nodes join and leave the net-work at an unpredictable rate. Therefore, providing e ective mechanisms to manage master failures is fundamental to exploit the MapReduce model in the implemen-tation of data-intensive applications in those dynamic environments where current MapReduce implementations could be unreliable. The goal of this work is investi-gating how to improve the master-slave architecture of current MapReduce imple-mentations to make it more suitable for Grid-like and P2P dynamic scenarios. The extended model we introduce here exploits a P2P model to dynamically assig

文档评论(0)

feiyang66 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档