《The Max Min Hill Climbing Bayesian Network Structure Learning Algorithm》.pdf

《The Max Min Hill Climbing Bayesian Network Structure Learning Algorithm》.pdf

  1. 1、本文档共48页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Mach Learn (2006) 65:31–78 DOI 10.1007/s10994-006-6889-7 The max-min hill-climbing Bayesian network structure learning algorithm Ioannis Tsamardinos · Laura E. Brown · Constantin F. Aliferis Received: January 07, 2005 / Revised: December 21, 2005 / Accepted: December 22, 2005 / Published online: 28 March 2006 Springer Science + Business Media, LLC 2006 Abstract We present a new algorithm for Bayesian network structure learning, called Max-Min Hill-Climbing (MMHC). The algorithm combines ideas from local learning, constraint-based, and search-and-score techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. In our extensive empirical evaluation MMHC out- performs on average and in terms of various metrics several prototypical and state-of-the-art algorithms, namely the PC, Sparse Candidate, Three Phase Dependency Analysis, Optimal Reinsertion, Greedy Equivalence Search, and Greedy Search. These are the first empirical re- sults simultaneously comparing most of the major Bayesian network algorithms against each other. MMHC offers certain theoretical advantages, specifically over the Sparse Candidate algorithm, corroborated by our experiments. MMHC and detailed results of our study are publicly available at /supplements/mmhc paper/mmhc index.html. Keywords Bayesian networks · Graphical models · Structure learning 1. Introduction A Bayesian network is a mathematical construct that compactly represents a joint probability distribution P among a set variables V . Bayesian networks are frequently employed for modeling domain knowledge in Decision Support Systems, particularly in medicine (Beinlich et al., 1989; Cowell et al., 1999; Andreassen et al., 1989). Editor: Andrew W. Moore I. Tsamardinos · L. E. Brown ()· C. F. Aliferis Discovery Systems Laboratory, D

文档评论(0)

ghfa + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档