2015年荐化学竞赛辅导讲座 氢键.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
化学竞赛辅导讲座 氢键 在基础有机化学中,曾经利用氢键解释醇和其它一些化台物的沸点及其在水中的溶解度等获得了很大成功。然而氢键的存在并不仅仅表现在这两方面,而且也不只局限在醇和酚等几类化合物中。事实上,氢键既存在于液体中,也存在于气体、晶体、溶液等各种状态中,且支配着化合物的各种性质。与一般共价键相比,氢键的键能比较小,键长比较长,是一中弱键,但对许多化合物各种性质的影响,有时非常显著。例如,羟基化台物(如乙醇)多数比其非羟基异构体(如甲醚)的沸点高很多(乙醇的沸点比甲醇约高101.5℃),原因是羟基化合物能形成氢键。 为了更好地了解氢键对众多有机化合物各种性质的影响,有必要回顾一下氢键的本质及有关问题。现简述如下。 氢键的生成 氢键的生成,主要是由偶极子与偶极之间的静电吸引作用。当氢原子与电负性甚强的原子(如A)结合时,因极化效应,其键间的电荷分布不均,氢原子变成近乎氢正离子状态。此时再与另一电负性甚强的原子(如B)相遇时,即发生静电吸引。因此结合可视为以H离子为桥梁而形成的,故称为氢键。如下式中虚线所示。 A─H---B 其中A、B是氧、氮或氟等电负性大且原子半径比较小的原子。 生成氢键时,给出氢原子的A—H基叫做氢给予基,与氢原子配位的电负性较大的原子B或基叫氢接受基,具有氢给予基的分子叫氢给予体。把氢键看作是由B给出电子向H配对,电子给予体B是氢接受体,电子接受体A─H是氢给予体。 氢键的形成,既可以是一个分子在其分子内形成,也可以是两个或多个分子在其分子间形成。例如:水扬醛和2—甲基—2—芳氧基丙酸分别在其分子内形成了氢键,而氟化氢和甲醇则是在其分子之间形成氢键。 氢键并不限于在同类分子之间形成.不同类分子之间亦可形成氢键,如醇、醚、酮、胺等相混时,都能生成类似O一H…O状的氢键。例如,醇与胺相混合即形成下列形式的氢键: 一般认为,在氢键A—H…B中,A—H键基本上是共价镀,而H…B键则是一种较弱的有方向性的范德华引力。因为原子A的电负性较大,所以A—H的偶极距比较大,使氢原子带有部分正电荷,而氢原于又没有内层电子,同时原子半径(约30pm)又很小,因而可以允许另一个带有部分负电何的原子B来充分接近它,从而产生强烈的静电吸引作用,形成氢键。 二、氢键的饱和性和方向性 氢键不同于范韶华引力,它具有饱和性和方向性。由于氢原子特别小而原子A和B比较大,所以A—H中的氢原子只能和一个B原子结合形成氢键。同时由于负离子之间的相互排斥,另一个电负性大的原子B′就难于再接近氢原子.如图1—1所示。这就是氢键的饱和性。 氢键具有方向性则是由于电偶极矩A—H与原于B的相互作用,只有当h—H…D在同一条直线上时最强,同时原子B一般含有未共用电子对,在可能范围内氢键的方向和未共用电子对的对称轴一致,这样可使原于B中负电荷分布最多的部分最接近氢原子,这样形成的氢键最稳定。 综上所述,不难看出,氢键的强弱与原子A与B的电负性大小有关,A、B的电负性越大,则氢键越强;另外也与原子B的半径大小有关,即原子B的半径越小别越容易接近H—A中的氢原子,因此氢键越强,例如,氟原子的电负性最大而半径很小,所以氢键中的F—H…F是最强的氢键。在F—H、O—H、N—H、C—H系列中,形成氢键的能力随着与氢原子相结合的原子的电负性的降低而递降。碳原子的电负性很小,C—H一般不能形成氢键,但在H—C≡N或HCCl3等中,由于氮原子和氯原子的影响,使碳原子的电负性增大,这时也可以形成氢链。例如HCN的分子之间可以生成氢键,三氯甲烷和丙酮之间也能生成氢键: 三、分子间氢键和分子内氢键 氢键可以分为分子间氢键和分子内氢键两大类。 1.分子间氢键 一个分子的A—H基与另一个分子的原子B结合而成的氢键称为分子间氢键。分子间氢键按形成氢键的分子是否相同,又分为相同分子间氢键和不同分子间氢键两类。 (1) 相同分子间的氢键 相同分子间氢键又可分为二聚分子中的氢键和多聚分子中的氢键两类。这里所说的二聚分子间的氢键,是指两个相同分子通过氢键形成二聚体分子中的氢键;而多聚分子中的氢键,是指多个相同分子通过氢键结合而成的分子中的氢键。 二聚分子中的氢键以二聚甲酸(COOH)2,中的氢键最典型。它是由一分子甲酸中的羟基氢原子和另一分子羧基中羰基氧原子彼此结合而成的环状结构。 由于二聚体没有可供再缔台的氢原子,所以不能形成三聚体分子。一般泼磅如 CH3COOH、C6H5COOH等都能借氢键结合成二聚分子(RCOOH)2 相同分子通过氢键形成的多聚分子,其结构又有链状结构、环状结构、层状结构和立体结构之分。其中链状结构以团体氰化氢比较典型。其结构式为: 无水

文档评论(0)

seym + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档