高电压技术重点复习大纲.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
汤逊理论 三个过程: α过程:起始电子形成电子崩的过程。 β过程:造成离子崩的过程。 γ过程:离子崩到达阴极后,引起阴极发射二次电子的过程。 自持放电条件: 总结: 将电子崩和阴极上的γ过程作为气体自持放电的决定因素是汤逊理论的基础。 汤逊理论的实质是电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极表面使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。 阴极逸出电子能否接替起始电子的作用是自持放电的判据。 汤逊理论的适用范围 汤逊理论是在低气压pd较小条件下建立起来的, pd过大,汤逊理论就不再适用。 pd过大时(气压高、距离大)汤逊理论无法解释: 放电时间:很短; 放电外形:具有分支的细通道; 击穿电压:与理论计算不一致; 阴极材料:无关; 汤逊理论适用于pd26.66kPa ·cm。 巴申定律: 当气体成份和电极材料一定时,气体间隙击穿电压(ub)是气压(p)和极间距离(d)乘积的函数。 气体放电流注理论: 它考虑了高气压、长气隙情况下不容忽视的若干因素对气体放电的影响,主要有以下两方面 空间电荷对原有电场的影响; 空间光电离的作用。 四个过程: 起始电子发生碰撞电离形成初始电子崩;初崩发展到阳极,正离子作为空间电荷畸变原电场,加强正离子与阴极间电场,放射出大量光子; 光电离产生二次电子,在加强的局部电场下形成二次崩; 二次崩电子与正空间电荷汇合成流注通道,其端部有二次崩留下的正电荷,加强局部电场产生新电子崩使其发展; 流注头部电离迅速发展,放射出大量光子,引起空间光电离,流注前方出现新的二次崩,延长流注通道; d)流注通道贯通,气隙击穿。 注:流注速度为108~109cm/s,而电子崩速度为107cm/s。 流注条件: 必要条件是电子崩发展到足够的程度,电子崩中的空间电荷足以使原电场明显畸变,加强电子崩崩头和崩尾处的电场;另一方面电子崩中电荷密度很大,所以复合频繁,放射出的光子在这部分很强,电场区很容易成为引发新的空间光电离的辐射源,二次电子主要来源于空间光电离;气隙中一旦形成流注,放电就可由空间光电离自行维持。 流注自持放电条件: 初崩头部电子数要达到10的8次方时,放电才能转为自持,出现流注。 小 结 1.汤逊理论只适用于pd值较小的范围,流注理论只适用于pd值较大的范围,二者过渡值为pd=26.66kPa·cm; (1)汤逊理论的基本观点: 电子碰撞电离是气体放电时电流倍增的主要过程,而阴极表面的电子发射是维持放电的必要条件。 (2)流注理论的基本观点: 以汤逊理论的碰撞电离为基础,强调空间电荷对电场的畸变作用,着重于用气体空间光电离来解释气体放电通道的发展过程; 放电从起始到击穿并非碰撞电离连续量变的过程,当初始电子崩中离子数达10的8次方以上时,引起空间光电离质变,电子崩汇合成流注; 流注一旦形成,放电转入自持。 2. 引起气体放电的外部原因有两个,其一是电场作用,其二是外电离因素。 把去掉外界因素作用后,放电立即停止的放电形式称为非自持放电;把由电场作用就能维持的放电称为自持放电。 3. 汤逊理论和流注理论自持放电条件的比较 (1)汤逊理论:自持放电由阴极过程来维持; 流注理论:依赖于空间光电离。 (2) γ系数的物理意义不同。 电场不均匀程度的划分 电场越不均匀,击穿电压和电晕起始电压之间的差别越大; 从放电观点看:电场的不均匀程度可以根据是否存在稳定的电晕放电来区分; 从电场均匀程度看:可用电场的不均匀系数划分; f2时为稍不均匀电场; f4时为极不均匀电场。 稍不均匀电场中的放电过程与均匀电场相似,属于流注击穿,击穿条件就是自持放电条件,无电晕产生。 但稍不均匀电场中场强并非处处相等. 电晕放电 定义:由于电场强度沿气隙的分布极不均匀,因而当所加电压达到某一临界值时,曲率半径较小的电极附近空间的电场强度首先达到了起始场强E0,因而在这个局部区域出现碰撞电离和电子崩,甚至出现流注,这种仅仅发生在强场区(小曲率半径电极附近空间)的局部放电称为电晕放电 ,开始出现电晕放电的电压成为电晕起始电压。 特点:电晕放电是极不均匀电场特有的自持放电形式,电晕起始电压低于击穿电压,电场越不均匀其差值越大。 极性效应 极不均匀电场中的放电存在着明显的极性效应。 极性决定于表面电场较强的电极所具有的电位符号: 在两个电极几何形状不同时,极性取决于曲率半径较小的那个电极的电位符号,如“棒-板”气隙。 在两个电极几何形状相同时,极性取决于不接地的那个电极上的电位,如“棒-棒”气隙。 正极性 (1)自持放电前阶段 正空间电荷削弱棒极附近场强而加强外部电场,阻止棒极附近流注形成使电晕起始电压提高; (2)自持放电阶段 空间电荷加强放电区外部空间的电场,因此当电压进一步

文档评论(0)

dzzj200808 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档