哈希表及其应用.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
哈希表及其应用 一、定义 二、基本原理 哈希表的基本原理是:使用一个下标范围比较大的数组A来存储元素,设计一个函数h,对于要存储的线性表的每个元素node,取一个关键字key,算出一个函数值h(key),把h(key)作为数组下标,用A[h(key)]这个数组单元来存储node。也可以简单的理解为,按照关键字为每一个元素“分类”,然后将这个元素存储在相应“类”所对应的地方(这一过程称为“直接定址”)。 但是,不能够保证每个元素的关键字与函数值是一一对应的,因此极有可能出现对于不同的元素,却计算出了相同的函数值,这样就产生了“冲突”,换句话说,就是把不同的元素分在了相同的“类”之中。例如,假设一个结点的关键码值为key,把它存入哈希表的过程是:根据确定的函数h计算出h(key)的值,如果以该值为地址的存储空间还没有被占用,那么就把结点存入该单元;如果此值所指单元里已存了别的结点(即发生了冲突),那么就再用另一个函数I进行映象算出I(h(key)),再看用这个值作为地址的单元是否已被占用了,若已被占用,则再用I映象,……,直到找到一个空位置将结点存入为止。当然这只是解决“冲突”的一种简单方法,如何避免、减少和处理“冲突”是使用哈希表的一个难题。 在哈希表中查找的过程与建立哈希表的过程相似,首先计算h(key)的值,以该值为地址到基本区域中去查找。如果该地址对应的空间未被占用,则说明查找失败,否则用该结点的关键码值与要找的key比较,如果相等则检索成功,否则要继续用函数I计算I(h(key))的值,……。如此反复到某步或者求出的某地址空间未被占用(查找失败)或者比较相等(查找成功)为止。 三、基本概念和简单实现 1、两个集合:U是所有可能出现的关键字集合;K是实际存储的关键字集合。 2、函数h将U映射到表T[0..m-1]的下标上,可以表示成 h:U→{0,1,2,...,m-1},通常称h为“哈希函数(Hash Function)”,其作用是压缩待处理的下标范围,使待处理的|U|个值减少到m个值,从而降低空间开销(注:|U|表示U中关键字的个数,下同)。 3、将结点按其关键字的散列地址存储到哈希表(散列表)中的过程称为“散列(Hashing)”。方法称为“散列法”。 4、h(Ki)(KiU)是关键字为Ki的结点的“存储地址”,亦称散列值、散列地址、哈希地址。 5、用散列法存储的线性表称为“哈希表(Hash Table)”,又称散列表。图中T即为哈希表。在散列表里可以对结点进行快速检索(查找)。 6、对于关键字为key的结点,按照哈希函数h计算出地址h(key),若发现此地址已被别的结点占用,也就是说有两个不同的关键码值key1和key2对应到同一个地址,即h(key1)=h(key2),这个现象叫做“冲突(碰撞)”。碰撞的两个(或多个)关键码称为“同义词”(相对于函数h而言)。如图1中的关键字k2和k5,h(k2)=h(k5),即发生了“冲突”,所以k2和k5称为“同义词”。假如先存了k2,则对于k5,我们可以存储在h(k2)+1中,当然h(k2)+1要为空,否则可以逐个往后找一个空位存放。这是另外一种简单的解决冲突的方法。 发生了碰撞就要想办法解决,必须想办法找到另外一个新地址,这当然要降低处理效率,因此我们希望尽量减少碰撞的发生。这就需要分析关键码集合的特性,找适当的哈希函数h使得计算出的地址尽可能“均匀分布”在地址空间中。同时,为了提高关键码到地址转换的速度,也希望哈希函数“尽量简单”。然而对于各种取值的关键码而言,一个好的哈希函数通常只能减少碰撞发生的次数,无法保证绝对不产生碰撞。因此散列除去要选择适当的哈希函数以外,还要研究发生碰撞时如何解决,即用什么方法存储同义词。 7、负载因子 我们把h(key)的值域所对应到的地址空间称为“基本区域”,发生碰撞时,同义词可以存放在基本区域还没有被占用的单元里,也可以放到基本区域以外另开辟的区域中(称为“溢出区”)。下面引入散列的一个重要参数“负载因子或装填因子(Load Factor)”,它定义为: а= 负载因子的大小对于碰撞的发生频率影响很大。直观上容易想象,а越大,散列表装得越满,则再要载入新的结点时碰上已有结点的可能性越大,冲突的机会也越大。特别当а>1时碰撞是不可避免的。一般总是取а<1,即分配给散列表的基本区域大于所有结点所需要的空间。当然分配的基本区域太大了也是浪费。例如,某校学生干部的登记表,每个学生干部是一个结点,用学号做关键码,每个学号用7位数字表示,如果分配给这个散列表的基本区域为107个存储单元,那么散列函数就可以是个恒等变换,学号为7801050的学生结点就存入相对地址为7801050的单元,这样一次碰撞也不会发生,但学校仅几百个学生干部,实际仅需要

文档评论(0)

bhl0572 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档