【智能控制理论讲解】CMAC-application.pdfVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
22 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 1, FEBUARY 2000 Optimal Design of CMAC Neural-Network Controller for Robot Manipulators Young H. Kim and Frank L. Lewis, Fellow, IEEE Abstract— This paper is concerned with the application neural-network based, closed-loop control can be found [12]. of quadratic optimization for motion control to feedback For indirect or identification-based, robotic-system control, sev- control of robotic systems using cerebellar model arithmetic eral neural network and learning schemes can be found in the lit- computer (CMAC) neural networks. Explicit solutions to the Hamilton–Jacobi–Bellman (H–J–B) equation for optimal control erature. Most of these approaches consider neural networks as of robotic systems are found by solving an algebraic Riccati equa- very general computational models. Although a pure neural-net- tion. It is shown how the CMAC’s can cope with nonlinearities work approach without a knowledge of robot dynamics may be through optimization with no preliminary off-line learning phase promising, it is important to note that this approach will not be required. The adaptive-learning algorithm is derived from Lya- very practical due to high dimensionality of input–output space. punov stability analysis, so that both system-tracking stability and error convergence can be guaranteed in the closed-loop system. In this way, the training or off-line learning process by pure con- The filtered-tracking error or critic gain and the Lyapunov nectionist models would require a neural network of impractical function for the nonlinear analysis are derived from the user input

文档评论(0)

精品资料 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档