使用基于物理信息的卷积神经网络求解Navier–Stokes方程的物理合理且守恒解.pdfVIP

使用基于物理信息的卷积神经网络求解Navier–Stokes方程的物理合理且守恒解.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

Article

Received:November28,2022;Accepted:May04,2023

PhysicallyplausibleandconservativesolutionstoNavier–Stokes

equationsusingphysics-informedCNNs

Jianfeng

Li,

Liangying

Zhou,

Jingwei

Sun

,

and

Guangzhong

Sun

SchoolofComputerScienceandTechnology,UniversityofScienceandTechnologyofChina,Hefei230027,China

✉Correspondence:

Jingwei

Sun,

E-mail:

sunjw@

©

2024

The

Author(s).

This

is

an

open

access

article

under

the

CC

BY-NC-ND

4.0

license

(/licenses/by-nc-nd/4.0/).

CiteThis:JUSTC,2024,54(4):0403(12pp)

Read

Online

Abstract:The

physics-informed

neural

network

(PINN)

is

an

emerging

approach

for

efficiently

solving

partial

differen-

tial

equations

(PDEs)

using

neural

networks.

The

physics-informed

convolutional

neural

network

(PICNN),

a

variant

of

PINN

enhanced

by

convolutional

neural

networks

(CNNs),

has

achieved

better

results

on

a

series

of

PDEs

since

the

parameter-sharing

property

of

CNNs

is

effective

in

learning

spatial

dependencies.

However,

applying

existing

PICNN-

based

methods

to

solve

Navier–Stokes

equations

can

generate

oscillating

predictions,

which

are

inconsistent

with

the

laws

of

physics

and

the

conservation

properties.

To

address

this

issue,

we

propose

a

novel

method

that

combines

PICNN

with

the

finite

volume

method

to

obtain

physically

plausible

and

conservative

solutions

to

Navier–Stokes

equations.

We

derive

the

second-order

upwind

difference

scheme

of

Navier–Stokes

equations

using

the

finite

volume

method.

Then

we

use

the

derived

scheme

to

calculate

the

partial

derivatives

and

construct

the

physics-informed

loss

文档评论(0)

教师资格证、公共营养师持证人

本人专注ppt制作、办公模板编辑六年有余,可以根据客户需求做出高品质ppt、办公表格等模板,以及文案等。

领域认证 该用户于2024年07月07日上传了教师资格证、公共营养师

1亿VIP精品文档

相关文档