基于matlab的语音识别技术.docVIP

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

PAGE5/NUMPAGES5

基于matlab的语音识别技术

工程题目:基于Matlab的语音识别一、引言

语音识别技术是让计算机识别一些语音信号,并把语音信号转换成相应的文

本或者命令的一种高科技技术。语音识别技术所涉及的领域非常广泛,包括信号处理、模式识别、人工智能等技术。近年来已经从实验室开始走向市场,渗透到家电、通信、医疗、消费电子产品等各个领域,让人们的生活更加方便。

语音识别系统的分类有三种依据:词汇量大小,对说话人说话方式的要求和对说话人的依赖程度。

(1)根据词汇量大小,可以分为小词汇量、中等词汇量、大词汇量及无限词汇量识别系统。

(2)根据对说话人说话方式的要求,可以分为孤立字(词)语音识别系统、连接字语音识别系统及连续语音识别系统。

(3)根据对说话人的依赖程度可以分为特定人和非特定人语音识别系统。

二、语音识别系统框架设计

2.1语音识别系统的根本结构

1

语音识别系统本质上是一种模式识别系统,其根本结构原理框图如图l所示,主要包括语音信号预处理、特征提取、特征建模(建立参考模式库)、相似性度量(模式匹配)和后处理等几个功能模块,其中后处理模块为可选局部。

三、语音识别设计步骤

3.1语音信号的特征及其端点检测

图2数字‘7’开始局部波形

图2是数字〞7〞的波形进行局部放大后的情况,可以看到,在6800之前的局部信号幅度很低,明显属于静音。而在6800以后,信号幅度开始增强,并呈现明显的周期性。在波形的上半局部可以观察到有规律的尖峰,两个尖峰之间的距离就是所谓的基音周期,实际上也就是说话人的声带振动的周期。

这样可以很直观的用信号的幅度作为特征,区分静音和语音。只要设定一个

2

门限,当信号的幅度超过该门限的时候,就认为语音开始,当幅度降低到门限以下就认为语音结束。

3.2语音识别系统

3.2.1语音识别系统的分类

语音识别按说话人的讲话方式可分为3类:〔1〕即孤立词识别〔isolatedwordrecognition),孤立词识别的任务是识别事先的孤立的词,如“开机〞、“关机〞等。〔3〕连续语音识别,连续语音识别的任务那么是识别任意的连续语音,如一个句子或一段话。

从识别对象的类型来看,语音识别可以分为特定人语音识别和非特定人语音识别,特定人是指针对一个用户的语音识别,非特定人那么可用于不同的用户。显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。

3.2.2语音识别系统的根本构成

语音识别系统的实现方案如图3所示。输入的模拟语音信号首先要进行处理,包括预滤波,采样和量化,加窗,端点检测,预加重等。语音信号经处理后,接下来很重要的一环就是特征参数提取。

图3语音识别系统

在训练阶段,将特征参数进行一定的处理之后,为每个词条得到一个模型,保存为模版库。在识别阶段,语音信号经过相同的通道得到语音参数,生成测试模版,与参考模板进行匹配,将匹配分数最高的参考模型作为识别结果。3.2.3语音识别系统的特征参数提取

特征提取是对语音信号进行分析处理,去除对语音识别无关紧要的冗余信息,获得影响语音识别的重要信息。语音信号是一种典型的时变信号,然而如果把观察时间缩短到十毫秒至几十毫秒,那么可以得到一系列近似稳定的信号。人的发音器官可以用假设干段前后连接的声管进行模拟,这就是所谓的声管模型。

全极点线性预测参数(LPC:LinerPredictionCoeffieient)可以对声管模型进行很好的描述,LPC参数是模拟人的发声器官的,是一种基于语音合成的参数模型。

在语音识别中,很少用LPC系数,而是用LPC倒谱参数(LPCC:LinerPredictionCepstralCoefficient)。LPCC参数的优点是计算量小,对元音有较好的描述能力,其缺点在于对辅音的描述能力较差,抗噪声性能较差。

3

然而,人的听觉系统是一个特殊的非线性系统,它响应不同频率信号的灵敏度是不同的,根本上是一个对数关系。近年来,一种能够比拟充分利用人耳这种特殊的感知特性的参数得到了广泛的应用,这就是Mel倒谱参数(MFCC:Mel一FrequencyCePstralCoeffieient)。MFCC参数能够比LPCC参数更好地提高系统的识别性能。

3.2.4特定人语音识别算法—DTW算法

在孤立词语音识别中,最为简单有效的方法是采用DTW〔DynamicTimeWarping,动态时间归整〕算法,该算法基于动态规划〔DP〕的思想,解决了发音长短不一的模

文档评论(0)

软件定制,课程辅导 + 关注
实名认证
服务提供商

计算机三级持证人

专注于工具类软件定制,解放双手,提高工作效率

领域认证该用户于2023年08月09日上传了计算机三级

1亿VIP精品文档

相关文档