- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
ConvolutionalNeuralNetworks
卷积神经网络积神经网络—诞生背景与历程卷积神经网络应用—LeNet-5手写数字识别深度学习—Hinton做了些什么深度学习在数字图像识别上的运用—Hinton如何在2012年ImageNet引起轰动主要内容
卷积神经网络提出的背景浅层神经网络大约二三十年前,神经网络曾经是机器学习领域特别热门的一个方向,这种基于统计的机器学习方法比起过去基于人工规则的专家系统,在很多方面显示出优越性。
0102但是后来,因为理论分析的难度,加上训练方法需要很多经验和技巧,以及巨大的计算量和优化求解难度,神经网络慢慢淡出了科研领域的主流方向。值得指出的是,神经网络(如采用误差反向传播算法:BackPropagation,简称BP算法,通过梯度下降方法在训练过程中修正权重使得网络误差最小)在层次深的情况下性能变得很不理想(传播时容易出现所谓的梯度弥散GradientDiffusion或称之为梯度消失,根源在于非凸目标代价函数导致求解陷入局部最优,且这种情况随着网络层数的增加而更加严重,即随着梯度的逐层不断消散导致其对网络权重调整的作用越来越小),所以只能转而处理浅层结构(小于等于3),从而限制了性能。卷积神经网络提出的背景
于是,20世纪90年代,有更多各式各样的浅层模型相继被提出,比如只有一层隐层节点的支撑向量机(SVM,SupportVectorMachine)和Boosting,以及没有隐层节点的最大熵方法(例如LR,LogisticRegression)等,在很多应用领域取代了传统的神经网络。显然,这些浅层结构算法有很多局限性:在有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定的制约。更重要的是,浅层模型有一个特点,就是需要依靠人工来抽取样本的特征。然而,手工地选取特征是一件非常费力的事情,能不能选取好很大程度上靠经验和运气。能不能自动地学习一些特征呢?浅层神经网络的缺陷
早在1989年,YannLeCun(现纽约大学教授)和他的同事们就发表了卷积神经网络(ConvolutionNeuralNetworks,简称CNN)的工作。01CNN是一种带有卷积结构的深度神经网络,通常至少有两个非线性可训练的卷积层,两个非线性的固定卷积层(又叫PoolingLayer)和一个全连接层,一共至少5个隐含层。02CNN的结构受到著名的Hubel-Wiesel生物视觉模型的启发,尤其是模拟视觉皮层V1和V2层中SimpleCell和ComplexCell的行为。03卷积神经网络
卷积神经网络应用三大特点:局部感受野权值共享次采样(pooling)LeNet-5手写数字识别
重点概念卷积核(卷积滤波器)特征图(FeatureMap)C层是一个卷积层:通过卷积运算,可以使原信号特征增强,并且降低噪音S层是一个下采样层:利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息F6层是经典神经网络:输入向量和权重向量之间的点积,再加上一个偏置。然后将其传递给sigmoid函数产生单元i的一个状态。
C1层:输入图片大小: 32*32卷积窗大小: 5*5卷积窗种类: 6输出特征图数量: 6输出特征图大小: 28*28 (32-5+1)神经元数量: 4707[(28*28)*6)]连接数: 12304[(5*5+1)*6]*(28*28)可训练参数: 156 [(5*5+1)*6]
01输入图片大小: (28*28)*602卷积窗大小: 2*203卷积窗种类: 604输出下采样图数量:605输出下采样图大小:(14*14)*606神经元数量: 1176 (14*14)*607连接数: 5880 (2*2+1)*(14*14)*608可训练参数: 12 (6*(1+1)) S2层:
卷积和子采样过程:No.1卷积过程包括:用一个可训练的滤波器fx去卷积一个输入的图像(第一阶段是输入的图像,后面的阶段就是卷积特征map了),然后加一个偏置bx,得到卷积层Cx。No.2子采样过程包括:每邻域四个像素求和变为一个像素,然后通过标量Wx+1加权,再增加偏置bx+1,然后通过一个sigmoid激活函数,产生一个大概缩小四倍的特征映射图Sx+1。
0102C3层输入图片大小:(14*14)*6卷积窗大小:5*5卷积窗种类:15输出特征图数量:16输出特征图大小:10*10(14-5+1)神经元数量:1600[(10*10)*16)]连接数: 151600(60+16)*(10*10)*25(部分连接)可训练参数:1516 [(60+16)*25](C3中的每个特征map是连接到S2中的
文档评论(0)