《统计学—基于R》第4章--随机变量的概率分布(R3).pptxVIP

《统计学—基于R》第4章--随机变量的概率分布(R3).pptx

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

数据分析

(方法与案例)

作者贾俊平版权所有违者必究StatisticswithR统计学R语言

第4章随机变量的概率分布4.1度量事件发生的可能性3.2随机变量概率分布3.3由正态分布导出的几个重要分布3.4样本统计量的概率分布robabilityP

4.1什么是概率概率是什么?怎样获得概率?怎样理解概率?第4章随机变量的概率分布

2018-9-25什么是概率?

(probability)对事件发生的可能性大小的度量明天降水的概率是80%。这里的80%就是对降水这一事件发生的可能性大小的一种数值度量购买一只股票明天上涨的可能性是30%,这也是一个概率一个介于0和1之间的一个值事件A的概率记为P(A)

2018-9-25怎样获得概率?重复试验获得概率当试验的次数很多时,概率P(A)可以由所观察到的事件A发生次数(频数)的比例来逼近在相同条件下,重复进行n次试验,事件A发生了m次,则事件A发生的概率可以写为用类似的比例来逼近一家餐馆将生存5年的概率,可以用已经生存了5年的类似餐馆所占的比例作为所求概率一个近似值主观概率?

4.2随机变量的概率分布4.2.1随机变量及其概括性度量4.2.2随机变量的概率分布4.2.3其他几个重要的统计分布第4章随机变量的概率分布

4.2.1随机变量及其概括性度量4.2随机变量的概率分布

2018-9-25什么是随机变量?

(randomvariables)事先不知道会出现什么结果投掷两枚硬币出现正面的数量一座写字楼,每平方米的出租价格一个消费者对某一特定品牌饮料的偏好一般用X,Y,Z来表示根据取值情况的不同分为离散型随机变量和连续型随机变量

2018-9-25离散型随机变量

(discreterandomvariables)随机变量X取有限个值或所有取值都可以逐个列举出来x1,x2,…以确定的概率取这些不同的值离散型随机变量的一些例子试验随机变量可能的取值抽查100个产品一家餐馆营业一天电脑公司一个月的销售销售一辆汽车取到次品的个数顾客数销售量顾客性别0,1,2,…,1000,1,2,…0,1,2,…男性为0,女性为1

2018-9-25连续型随机变量

(continuousrandomvariables)可以取一个或多个区间中任何值所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任意点连续型随机变量的一些例子试验随机变量可能的取值抽查一批电子元件新建一座住宅楼测量一个产品的长度使用寿命(小时)半年后完工的百分比测量误差(cm)X?00?X?100X?0

2018-9-25离散型随机变量的期望值

(expectedvalue)描述离散型随机变量取值的集中程度离散型随机变量X的所有可能取值xi与其取相对应的概率pi乘积之和记为?或E(X),计算公式为?

2018-9-25离散型随机变量的方差

(variance)??

2018-9-25离散型数学期望和方差

(例题分析)【例4—1】一家手机制造商声称,它们所生产的手机100个中拥有次品的个数及相应的概率如下表所示。求该手机次品数的期望值和标准差次品数X=xi0123概率P(X=xi)?pi0.750.120.080.05

2018-9-25用R计算期望值和方差#计算期望值#计算方差计算标准差load(C:/example/ch4/example4_1.RData)mymean-sum(example4_1$次品数*example4_1$概率)mymeanmyvar-sum((example4_1$次品数-mymean)^2*example4_1$概率)myvarsqrt(myvar)

2018-9-25连续型随机变量的期望和方差连续型随机变量的期望值方差??

4.2.2随机变量的概率分布4.2随机变量的概率分布

2018-9-25离散型随机变量的概率分布列出离散型随机变量X的所有可能取值列出随机变量取这些值的概率通常用下面的表格来表示X=xix1,x2,…,xnP(X=xi)=pip1,p2,…,pnP(X=xi)=pi称为离散型随机变量的概率函数pi?0;常用的有二项分布、泊松分布、超几何分布等

2018-9-25二项试验

(Bernoulli试验)二项分布建立在Bernoulli试验基础上贝努里试验满足下列条件一次试验只有两个可能结果,即“成功”和“失败”“成功”是指我们感兴趣的某种特征一次试验“成功”的概率为p,失败的概率为q=1-p,且概率p对每次试验

文档评论(0)

180****1080 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档