生物柴油的基因工程技术.docxVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
生物柴油的基因工程技术 社会的发展加速了人们对能源的消耗,能源问题已成为各国必须解决的全球问题。统计显示:全球石油探明储量仅供生产40年,这更为人类敲响了能源危机的警钟。此外,化石能源燃烧过程中会产生大量CO2,引起的温室效应将直接影响人类的生存环境。因此,为解决能源和环境问题,世界各国都在积极地寻找新能源,以应对将来可能发生的能源危机。生物柴油作为生物能源的一种,越来越得到各国的重视。与化石柴油相比,生物柴油具有闪点高、燃烧性高、污染小、可再生等优点,是化石燃料的理想替代能源。 生物柴油原料的油脂含量是制约生物柴油发展的一大瓶颈。运用基因工程技术,克隆并特异性表达调控脂类合成相关酶的基因,从而提高生物脂肪酸含量并改变其组分以适应生物柴油发展的需要,是目前解决这一难题的有效手段。本文结合基因工程技术的应用现状,综述了基因工程在改造生物柴油原料中的研究进展,以期对生物柴油产业的发展提供一定指导。 1 结构基因的应用 基因工程,又称DNA重组技术,是指在基因水平上,以人工的方法取得目的基因,在体外重组于载体上,形成重组DNA分子,然后将重组DNA分子转入受体细胞进行复制、转录和翻译,从而产生人们所需要的目的基因的产物。基因工程技术打破了天然物种屏障,人们可以按照主观愿望,将来自不同生物体的DNA片段组合到一起,并获得新的表达产物。 基因工程技术促进了生物学的迅猛发展,为解决生命科学领域的一些重大问题提供了强有力的手段,现已广泛应用于农业、医学、食品和环境保护等诸多领域。如培育抗虫、抗病、抗寒、抗旱农作物新品种,生产基因工程药物和可降解有毒物质的工程菌等。同样,在生物柴油的生产中,运用基因工程提高生物柴油原料的油脂含量,也逐步取代了传统方法,并取得了显著的效果。 2 微藻生物柴油 生物柴油作为一种新型可再生能源,其生产原料主要为含油植物,如大豆、油菜、棕榈和蓖麻等。此外,将含油微藻作为生物柴油原料,也在逐渐成为一个新的研究领域。用微藻生产生物柴油具有更多优势,缪晓玲等利用小球藻生产的生物柴油,不仅具有传统化石柴油相当的密度、粘度和热值,而且具有更低的冷滤点和良好的发动机低温启动性能。 迄今,基因工程技术在生物柴油中的应用,主要集中在提高含油植物的脂类含量上。虽然在含油微藻方面也有一些研究,但也主要借鉴对含油植物的研究方法。下面结合国内外主要研究方向,综述基因工程在提高生物柴油原料中脂类含量的研究进展。 2.1 acced基因对含油微藻的活性 乙酰辅酶A羧化酶(Acetyl-Co A carboxylase,ACCase)是脂肪酸生物合成的关键酶,它催化脂肪酸合成的第一步反应,即催化乙酰辅酶A生成丙二酸单酰辅酶A。生物中的ACCase有2种类型:一是异质型,存在于细菌、双子叶植物和非禾本科单子叶植物等的质体中,由BC(生物素羧化酶)、BCCP(生物素羧基载体蛋白)、α型CT(羧基转移酶)和β型CT(羧基转移酶)等4个亚基组成;二是同质型,存在于动植物、酵母、藻类等的胞质溶胶中,由单亚基组成。有研究表明,植物脂肪酸含量与ACCase的活性呈正相关。为了提高含油植物的脂肪酸含量,许多研究者进行了超量表达ACCase的试验。其中,Roesler等将一个叶绿体转移肽和napin启动子与拟南芥同质型ACC1基因融合,然后转化甘蓝型油菜。结果发现,转基因油菜的T1代成熟种子中ACCase的活性增加了1.7~1.9倍,总的含油量约增加了5%。由于ACCase过量表达,也改变了种子脂肪酸的组成。Ohlrogge等用同样的方法转化油菜,获得的转基因油菜T1代成熟种子中ACCase的活性增加了1.7~1.9倍,脂肪酸含量增加了6%。 许多学者研究了ACCase不同亚基在脂肪酸合成中的作用。Alisa等克隆和表达了油棕β-羧基转移酶基因(acc D)和生物素羧化酶基因(acc C),研究表明acc D基因的表达在维持异质型ACCase的水平及植物种子的含油量中起着最重要的作用。这个研究也首次证明了高水平acc D基因的表达,会产生高水平的含油量。此外,Madoka等、Kode等分别采用超量表达和基因敲除技术方法研究了acc D基因,结果显示acc D基因编码的β-CT亚基是ACCase的限制因子。 对于含油微藻乙酰辅酶A羧化酶的研究比较少,Dunahay等首次报道了含叶绿素微藻的遗传转化。在此试验中,他利用硅藻的遗传转化系统,超量表达ACCase基因(acc1),初步结果显示,转基因硅藻中ACCase的活性增加了2~3倍。 2.2 丙二酰社会主义酶a 脂肪酸合成过程中,乙酰辅酶A经乙酰辅酶A羧化酶催化转变为丙二酰辅酶A后,脂肪酸合成酶(FAS)就以丙二酰辅酶A为底物,继续进行脂肪酸的合成。在植物中,FAS由ACP(酰基载体蛋白)和其他6种酶构成。其中,D

文档评论(0)

lgjllzx + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档