FAFU机器学习03-2 Linear Regression课件.pptxVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Foundations of Machine Learning Regression2023/11/4Foundations of Machine Learning RegressionSimple linear regression(简单线性回归)Evaluating the modelMultiple linear regression(多元线性回归)Polynomial regression(多项式回归)Regularization(正则化)Applying linear regressionFitting models with gradient descent(梯度下降)2023/11/4Linear RegressionLesson 3 - 2 Simple linear regressionSimple linear regression can be used to model a linear relationship between one response variable and one explanatory variable. Suppose you wish to know the price of a pizza.2023/11/4Linear RegressionLesson 3 - 3 Observe the data2023/11/4Linear RegressionLesson 3 - 4import matplotlib.pyplot as pltX = [[6], [8], [10], [14], [18]]y = [[7], [9], [13], [17.5], [18]]plt.figure()plt.title(Pizza price plotted against diameter)plt.xlabel(Diameter in inches)plt.ylabel(Price in dollars)plt.plot(X, y, k.)plt.axis([0, 25, 0, 25])plt.grid(True)plt.show() Sklearn.linear_model.LinearRegression2023/11/4Linear RegressionLesson 3 - 5# import sklearnfrom sklearn.linear_model import LinearRegression# Training dataX = [[6], [8], [10], [14], [18]]y = [[7], [9], [13], [17.5], [18]]# Create and fit the modelmodel = LinearRegression()model.fit(X, y)print(A 12 pizza should cost: $%.2f % model.predict([12])[0])# A 12 pizza should cost: $13.68 Sklearn.linear_model.LinearRegressionThe sklearn.linear_model.LinearRegression class is an estimator. Estimators predict a value based on the observed data. In scikit-learn, all estimators implement the fit() and predict() methods. The former method is used to learn the parameters of a model, and the latter method is used to predict the value of a response variable for an explanatory variable using the learned parameters. It is easy to experiment with different models using scikit-learn because all estimators implement the fit and predict methods.2023/11/4Linear RegressionLesson 3 - 6 Results2023/11/4Linear RegressionLesson 3 - 7print((ercept_, model.coef_))Z = model.predict(X)plt.scatter(X, y)plt.plot

文档评论(0)

暗伤 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档