- 1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。。
- 2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 3、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
并行计算奇异值分解--Jacobi旋转 鉴于矩阵的奇异值分解SVD在工程领域的广泛应用(如数据压缩、噪声去除、数值分析等等,包括在NLP领域的潜在语义索引LSI核心操作也是SVD),今天就详细介绍一种SVD的实现方法--Jacobi旋转法。跟其它SVD算法相比,Jacobi法精度高,虽然速度慢,但容易并行实现。 一些链接 ? /Article/CDMD-10285-1012286387.htm?并行JACOBI方法求解矩阵奇异值的研究。本文呈现的代码就是依据这篇论文写出来的。 /javanumerics/jama/?Jama包是用于基本线性代数运算的java包,提供矩阵的cholesky
有哪些信誉好的足球投注网站
文档评论(0)