磁共振成像序列的机理研究.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
磁共振成像序列的机理研究 【摘要】1946年,人们最初认识了核磁共振(NMR)现象。之后,NMR很快产生了实际用途。随着时间的推移,NMR技术不断发展,其解析分子结构的能力也越来越强。1973年,核磁共振成像技术(MRI)问世并日趋成熟,被人类广泛应用于各个领域,成为一项常规的医学检测手段。近年来,科学家在磁共振成像序列的机理上不断进行探究,并成功扩充磁共振序列库,对推动医学、神经生理学和 认知神经科学的发展做出重要贡献,为人类揭示大脑和生命的奥秘奠基。本文主要介绍了几种常用的磁共振成像序列——SE序列、FSE序列、IR序列、GRE序列和三种杂合序列。 【关键词】核磁共振成像、序列、磁化矢量、弛豫、RF脉冲 【正文】 一、磁共振成像的原理及概述 处在磁场中的任何含有奇数质子或中子的原子核会吸收与磁场强度成正比的特定频率的电磁波能量而处于受激高能态。当处于受激高能态的原子核回复到初始低能态时,将会辐射出与激励频率相同的电磁波。这一现象被称为核磁共振(NMR),磁共振设备有:MR设备的场强、MR设备的磁体和MR设备的线圈。 磁共振成像(MRI)是基于核磁共振(NMR)原理的成像技术。依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度 磁场检测所发射出的 电磁波,即可得知构成这一物体 原子核的位置和种类,据此可以绘制成物体内部的结构图像。核磁共振成像(MRI)已在物理、化学、医疗、石油化工、考古等方面获得了广泛的应用,极大地推动了医学、神经生理学和 认知神经科学的迅速发展。 由于氢为磁化最高的原子核,且氢为人体内含量最多的元素,故MRI中目前只应用氢核成像。在自然状态下,质子是无序的,因此它们不显示磁性。利用磁场使质子规范排列后,质子就会形成一个相应的磁化矢量,该磁化矢量方向与外磁场纵轴的方向相同。然而此时形成的磁力与外磁场相比十分微弱,还不能直接应用与成像技术。质子在外磁场中有特定的自旋方式和“进动”的运动方式。而其“进动频率”与外磁场的场强有关,用Lamor方程可表示为。根据Lamor方程计算出能使氢质子产生共振的射频脉冲(RF脉冲),并向质子施加特定频率的RF脉冲,质子便会吸收RF脉冲的能量发生跃迁,同时变为处于“同相”的质子,形成一个新的宏观磁化量,即横向磁化矢量。此时的MR信号就可以应用成像。 新建立的横向磁化矢量的消失与原来的纵向磁化矢量的恢复过程称为“弛豫”。其中,纵向弛豫时间称为,横向弛豫时间称为。弛豫时间为一常数:=纵向磁化恢复到原来磁化量63%的时间;=横向磁化减少到初始的37%的时间。人体中不同成分的组织和结构的弛豫时间不同,正常组织与该组织中的病变组织之间的弛豫时间也不同,这是MRI用于临床诊断的最主要的物理基础。 MR信号与质子密度、T1、T2值、化学位移、相位、运动等因素有关,而这些因素对MR信号的影响收RF脉冲的调节、所用的梯度以及信号采集时刻的控制。因此,MRI成像技术中,有多个成像参数提供丰富的诊断信息,使MRI获得的图像十分清晰精细。且MRI对软组织有较好的分辨力,能够通过调节磁场自由选择所需剖面,对全身各系统疾病的诊断都有很大的价值。 二、磁共振成像的序列 磁共振成像序列可分为多种:1、自旋回波(SE)序列;2、快速自旋回波(FSE)序列;3、反转恢复(IR)序列;4、梯度回波(GRE)序列; 5、杂合序列。 (1)自旋回波(SE)序列:SE序列是目前MR成像中最基本、最常用的脉冲序列。SE序列包括单回波SE序列和多回波SE序列。单回波序列的过程是先发射一个90°脉冲,间隔一段时间后再发射一个180°脉冲,此后再经过一段时间间隔就出现了回波,即可测量回波信号的强度。其中,90°RF脉冲至测量回波信号之间的时间称为回波时间(TE)。在实际成像过程中,上述过程需要重复,相邻两个90°RF脉冲之间的时间间隔为重复时间(TR)。因此,SE序列组织的MR信号强度可用Bloch方程表示: 从中可知,T1越长或T2越短,则信号越弱;T1越短、T2越长或质子密度越高,则信号越强。成像时通过对TR和TE时间的选择,可获得不同强度的T1、T2和质子密度加权像。1、选用长TR(1500~2500ms)和短TE(10~25ms)可得到质子密度加权像;2、选用长TR(1500~2500ms)和长TE(80~120ms)可得到T2加权像;3、选用短TR(5000ms左右)和短TE(10~25ms)可得到T1加权像。若均选用中等长度的TE和TR,则无法突出对比,从而不适用于医学成像。 多回波序列是在施加90°RF脉冲后,每隔特定的时间连续施加多个180°RF脉冲,使磁化矢量产生多个回波。多回波SE序列可显著缩短成像时间,但因为弛豫的作用,相继产生的回波信号幅度呈指数性衰减,使图像的信噪比降低

文档评论(0)

118books + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档