武汉理工大学数字图像处理英文课件 Chapter5(5).pptVIP

武汉理工大学数字图像处理英文课件 Chapter5(5).ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Laplacian Filter Study Image of Gaussian Function Image of Laplacian of Gaussian Function Plot rms error vs. alpha Finding Alpha for Minimum Error Matlab Function imnorm * Construct a 256 x 256 image of the function gaus(r) = exp(-pi*r^2) over the domain -1.5 (x,y) 1.5. Then construct an image of the Laplacian of gaus(r) over the same domain. Find the rms difference between this image and those constructed by applying a Laplacian convolution filter to the original image. Plot the rms difference as a function of alpha. Find the value of alpha that minimizes this difference. global m1 m2 z lz range steps; range = 3; steps = 256; x = linspace(-range/2,range/2,steps); y = -x; x = ones(steps,1)*x; y = y * ones(1,steps); r2 = x.*x + y.*y; z = exp(-pi*r2); view = imnorm(z); imshow(view); imwrite(view,gaus.jpg); lz = -4*pi*(pi*r2-1).*exp(-pi*r2); view = imnorm(lz); imshow(view); imwrite(view,lgaus.jpg); The image constructed is the negative of the Laplacian. m1 = [0 1 0; 1 -4 1; 0 1 0]; m2 = [1 0 1; 0 -4 0; 1 0 1]; clear rms_error lmin = -.5; lmax = 0.5; lsteps = 31; for i = 0:(lsteps-1) a = lmin+ (lmax-lmin)*i/(lsteps-1); rms_error(i+1) = func(a); end %Plot the Error Graph plot(linspace(lmin,lmax,lsteps),rms_error); title(RMS Error vs. Alpha); xlabel(Alpha); ylabel(RMS Error); -0.5 0 0.5 2 4 6 8 x 10 -4 RMS Error vs. Alpha Alpha RMS Error function error = func(v) global m1 m2 z lz range steps a = v(1); lap = ((1-a)*m1+a*m2)/(1+a); zlap = -filter2(lap,z,valid)/(range/(steps-1))^2; diff = zlap-lz; error = sqrt(mean(diff(:).^2)); %Determine the Best Alpha based upon RMS Error amin = fminsearch(@func,0) %Show the Best Laplacian Matrix lap = ((1-amin).*m1+amin.*m2)/(1+amin) amin = -0.2174 lap = -0.2779 1.5557 -0.2779 1.5557 -5.1114 1.5557 -0.2779 1.5557 -0.2779 The final results are function out = imnorm(inp) % IMNORM % out = imnorm(inp) % normalizes input image between (0..1) % for unipolar image divide by the maximum val

文档评论(0)

ormition + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档