- 1、本文档共3页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于盲源分离的语音识别前端语音净化处理研究
摘要:研究了利用盲源分离理论解决语音识别之前的语音净化问题。基于MSICA算法良好的性能、低复杂度和实时性,设计了以TI公司的TMS320C6416数字信号处理器为内核的语音净化系统。该系统可以使语音识别系统获得纯净语音,从而有效提高语音识别系统的识别率和鲁棒性。 ?? 关键词:盲源分离 DSP 语音识别 语音净化目前针对语音识别提出了很多算法,但是这些研究基本上都是基于较为纯净的语音环境,一旦待识别的环境中有噪声和干扰,语音识别就会受到严重影响。因为大多数语音识别的语音模板基本上是在无噪声和无混响的“纯净”环境中采集、转换而成。而实现环境中不可避免地存在干扰和噪声,包括其他人的声音和回声等,这些噪声有时很强,使语音识别系统的性能大大降低甚至瘫痪。已有的信号去噪、参数去噪和抗噪识别等方法都有一定的局限。如果能实现噪声和语音的自动分离,即在识别前就获得较为纯净的语音,可以彻底解决噪声环境下的识别问题。近年来取得很大进展的盲源分离为噪声和语音的分离提供了可能。盲源分离(Blind Source Separation)的算法众多且运算复杂,经比较,其中T.Nishikawa等人提出的分阶段ICA方法(MSICA)适合有混响的噪声环境中的语音分离问题。经过计算机仿真,MSICA算法分离一段7s的语音要用时10ms以上,计算机和低速的DSPs很难满足实时要求。针对这一算法,设计了一套以TI的TMS320C6416 DSP(简称6416)芯片为内核的语音净化系统。6416的时钟速度高达720MHz,经过使用MSICA算法的测试,该系统可以实时地对语音识别的信号进行净化处理,有效地提高语音识别系统的抗噪性和鲁棒性。1 算法描述1.1 语音识别信号的混合模型1.1.1 卷积混合一般模型语音信号的混合模型已从瞬时模型发展到卷积模型,相比瞬时模型而言卷积模型更接近真实环境。麦克风所测是卷积混迭信号,即源信号及其滤波与延迟的混迭信号的线性组合再加上其它噪声,如(1)式所示。式(1)中,sj(t),j=1,…,N为信号源,且各源信号相互独立;xi(t),i=1,…,N为N个观测数据向量,其元素是各个麦克凤得到的输入。所以观测信号xi(t)是每个源信号sj(t)经过延时tij,并乘以因子aij(t)(冲击响应)后叠加,最后加上噪声ni(t)。1.1.2 针对语音识别的简化混合模型一般的语音识别只有一个麦克风,根据盲源分离理论,麦克凤数应不少于信源数,所以采用主副两个麦克风输入待识别语音,为简化处理假定只有主讲话者声音s1和背景噪声s2(此背景噪声包括经过延迟的回声)两个声源。可得如图1的混合模型。信号源s1到达两个麦克风的时间间隔为t21,且幅度值不同;s2到达两个麦克风的时间间隔为t12,幅度值也不同。又因为主信号源s1非常靠近两个麦克风,所以认为T21比T12小很多,且趋于零。于是得到相应的模型表达式的简化形式:x1(t)=s1(t)+a12s2(t-t12)+n1(t)???? (2)x2(t)=a21s1(t-t21)+s2(t)+n2(t)1.2 MSICA算法及其实现步骤传统采用频域ICA(FDICA)或者时域ICA(TDICA)方法,单一的方法在真实环境中缺点很明显,分离效果在混响环境中受到很大影响。然而一种时频域结合多级分离的混合型ICA算法——MSICA算法可以有效解决这一问题。??? 该算法主要由三个步骤组成:首先,利用FDICA的高稳态性的优点在一定程度上分离源信号;为了简化后续计算,白化FDICA分离出来的信号;接着,把白化后的FDICA输出信号当作TDICA的输入信号,并用TDICA分离线留的交叉干扰分量;最后,TDICA的输出信号即为分离信号。算法框图如图2所示。2 DSP硬件系统设计2.1 硬件结构为实现上述算法设计了DSP语音分离系统,该系统主要参数如下:·TMS320C6416 DSP;·16M words FLASH ROM;·两个EMIF:64-Bit EMIFA和16-Bit EMIFB;·133MHz的16MB SDRAM;·两个16-bit立体声CODEC:TLV320AD50。??? TMS320C6416有很高的信号处理能力以及丰富的片内存储咕嘟和片内外设,且有两级内部存储结构。第一级L1缓存包含各为16KB的程序和数据存储器,第二级L2包含1024KB的存储空间。第一级只能作为缓存而第二级可以被设置为部分静态RAM和部分缓存。在语音净化系统中,设置L2为4通道256KB缓存和768KB静态RAM。这种配置使用了最大允许的缓存,是因为MSICA算法将处理大量的数据,
您可能关注的文档
- 基于惠斯通电桥传感器的温度补偿方法.PDF
- 基于混合多属性评价的有序用电排序-电力系统自动化.DOC
- 基于混合体系结构的软件可靠性评价方法与应用-系统工程与电子技术.PDF
- 基于活度分析的优化储集层划分方法.DOC
- 基于机器视觉的圆定位技术研究-计算机工程与应用.PDF
- 基于机器视觉的圆筒形零件直角梯形槽槽宽检测研究-包装工程.PDF
- 基于基本杆组法的曲柄滑块机构动态强度可靠性分析.PDF
- 基于基准台站及加密台站的华北平原冬小麦水分亏缺-中国农业气象.PDF
- 基于激光点云与建筑信息模型技术的复杂船舱容积计算方法.PDF
- 基于激光位移传感器的3维位置测量算法研究.PDF
- 2025中国冶金地质总局所属在京单位高校毕业生招聘23人笔试参考题库附带答案详解.doc
- 2025年01月中国人民大学文学院公开招聘1人笔试历年典型考题(历年真题考点)解题思路附带答案详解.doc
- 2024黑龙江省农业投资集团有限公司权属企业市场化选聘10人笔试参考题库附带答案详解.pdf
- 2025汇明光电秋招提前批开启笔试参考题库附带答案详解.pdf
- 2024中国能建葛洲坝集团审计部公开招聘1人笔试参考题库附带答案详解.pdf
- 2024吉林省水工局集团竞聘上岗7人笔试参考题库附带答案详解.pdf
- 2024首发(河北)物流有限公司公开招聘工作人员笔试参考题库附带答案详解.pdf
- 2023国家电投海南公司所属单位社会招聘笔试参考题库附带答案详解.pdf
- 2024湖南怀化会同县供水有限责任公司招聘9人笔试参考题库附带答案详解.pdf
- 2025上海烟草机械有限责任公司招聘22人笔试参考题库附带答案详解.pdf
文档评论(0)