Introduction to OpenMP (Originally for CS 838, Fall 2005)课件.pptVIP

Introduction to OpenMP (Originally for CS 838, Fall 2005)课件.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Microbenchmark: Ocean for( t=0; t t_steps; t++) { for( x=0; x x_dim; x++) { for( y=0; y y_dim; y++) { ocean[x][y] = /* avg of neighbors */ } } } #pragma omp parallel for \ shared(ocean,x_dim,y_dim) private(x,y) // Implicit Barrier Synchronization temp_ocean = ocean; ocean = other_ocean; other_ocean = temp_ocean; 精品文档 Microbenchmark: Ocean ocean_dynamic – Traverses entire ocean, row-by-row, assigning row iterations to threads with dynamic scheduling. ocean_static – Traverses entire ocean, row-by-row, assigning row iterations to threads with static scheduling. ocean_squares – Each thread traverses a square-shaped section of the ocean. Loop-level scheduling not used—loop bounds for each thread are determined explicitly. ocean_pthreads – Each thread traverses a square-shaped section of the ocean. Loop bounds for each thread are determined explicitly. OpenMP PThreads 精品文档 Microbenchmark: Ocean 精品文档 Microbenchmark: Ocean 精品文档 Microbenchmark: GeneticTSP Genetic heuristic-search algorithm for approximating a solution to the traveling salesperson problem Operates on a population of possible TSP paths Forms new paths by combining known, good paths (crossover) Occasionally introduces new random elements (mutation) Variables: Np – Population size, determines search space and working set size Ng – Number of generations, controls effort spent refining solutions rC – Rate of crossover, determines how many new solutions are produced and evaluated in a generation rM – Rate of mutation, determines how often new (random) solutions are introduced 精品文档 Microbenchmark: GeneticTSP while( current_gen Ng ) { Breed rC*Np new solutions: Select two parents Perform crossover() Mutate() with probability rM Evaluate() new solution Identify least-fit rC*Np solutions: Remove unfit solutions from population current_gen++ } return the most fit solution found Outer loop has data dependence between iterations, as the population is no

文档评论(0)

liuxiaoyu98 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档