Bayesian fMRI Data Analysis with Sparse Spatial Basis Function Priors 具有稀疏空间基函数先验的贝叶斯fmri数据分析.pdf
- 1、本文档共49页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Bayesian fMRI Data Analysis
with Sparse Spatial Basis Function Priors
Guillaume Flandin a,∗,1 William D. Penny a
a Wellcome Department of Imaging Neuroscience, UCL, London, UK
Abstract
In previous work we have described a spatially regularised General Linear Model
(GLM) for the analysis of brain functional Magnetic Resonance Imaging (fMRI)
data where Posterior Probability Maps (PPMs) are used to characterise regionally
specific effects. The spatial regularisation is defined over regression coefficients via
a Laplacian kernel matrix and embodies prior knowledge that evoked responses are
spatially contiguous and locally homogeneous. In this paper we propose to finesse
this Bayesian framework by specifying spatial priors using Sparse Spatial Basis
Functions (SSBFs). These are defined via a hierarchical probabilistic model which,
when inverted, automatically selects an appropriate subset of basis functions. The
method includes nonlinear wavelet shrinkage as a special case. As compared to
Laplacian spatial priors, SSBFs allow for spatial variations in signal smoothness,
are more computationally efficient and are robust to heteroscedastic noise. Results
are shown on synthetic data and on data from an event-related fMRI experiment.
Key words: Variational Bayes, fMRI, Sparse spatial prior, Wavelet denoising,
General linear model, Hierarchical model.
1 Introduction
Functional Magnetic Resonance Imaging (fMRI) is an established technique
for making inferences about regionally specific activations in the human brain
∗ Corresponding author. Wellcome Department of Imaging Neuroscience, 12 Queen
Square, London WC1N 3BG, UK. Fax: +44 20 7833 7478.
Email addresses: gflandin@fil.ion.ucl.ac.uk (Guillaume Flandin),
wpenny@fil.ion.ucl.ac.uk (William D. Penny).
1 G.F. is now with Service Hospitalier Fr´ed´eric Joliot, CEA/DSV/DRM, 4 Plac
您可能关注的文档
- 单位实施纯正自然人犯罪的司法尴尬与立法解脱.pdf
- See No Evil The Effect of Communication Medium and Motivation on Deception Detection 看不到邪恶:沟通媒介和动机对欺骗检测的影响.pdf
- DiscoveryStudio基上机操作Tutorials说明.pdf
- 北京雨燕与北京古建筑.pdf
- DB33∕T 2099-2018 高速公路边坡养护技术规范 .pdf
- A user-centred approach to developing bWell, a mobile app for arm and shoulder exercises after breast cancer treatment 以用户为中心的方法开发bwell,这是一款用于乳腺癌治疗后手臂和肩膀运动的移动应用程序。.pdf
- Green Innovation Trends and Systems Thinking 绿色创新趋势与系统思维.pdf
- 《健康住宅建设技术要点》2004年修订版.pdf
- EIT-TIA568商业建筑电信布线标准.pdf
- GYT 306.1-2017 有线电视网络光纤到户系统技术规范 第1部分:总体技术要求.pdf
- 2024年江西省高考政治试卷真题(含答案逐题解析).pdf
- 2025年四川省新高考八省适应性联考模拟演练(二)物理试卷(含答案详解).pdf
- 2025年四川省新高考八省适应性联考模拟演练(二)地理试卷(含答案详解).pdf
- 2024年内蒙通辽市中考化学试卷(含答案逐题解析).docx
- 2024年四川省攀枝花市中考化学试卷真题(含答案详解).docx
- (一模)长春市2025届高三质量监测(一)化学试卷(含答案).pdf
- 2024年安徽省高考政治试卷(含答案逐题解析).pdf
- (一模)长春市2025届高三质量监测(一)生物试卷(含答案).pdf
- 2024年湖南省高考政治试卷真题(含答案逐题解析).docx
- 2024年安徽省高考政治试卷(含答案逐题解析).docx
文档评论(0)