基于大数据的数据隐私加密算法研究.docxVIP

基于大数据的数据隐私加密算法研究.docx

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于大数据的数据隐私加密算法研究

基于大数据的数据隐私加密算法研究   摘要:随着信息时代的发展,数据量的规模迅速增长,数据的类型也变得复杂化,数据中往往包含了很多具有重要价值的信息,然而现阶段数据隐私保护技术上的不完善,无法切实的对大数据环境下数据隐私进行加密保护,使得大数据的数据隐私加密的算法的优化改进逐渐成为研究的重要课题。该文就以大数据环境下数据隐私加密算法的原理及数据隐私加密算法的优化情况进行探讨,对其现状及发展趋势进行分析。   关键词:大数据;数据隐私;隐私保护   中图分类号:TP311 文献标识码:A 文章编号:1009--0018-02   随着互联网+与大数据时代的到来,以云计算和大数据为代表的信息技术深刻的改变了我们的生活。大数据环境的不断发展,使得数据的存储与计算、发布和共享等都有了极大的便利。据统计,现阶段的互联网用户已经突破了30亿,互联网全球渗透率已经高达43%,越来越多的网络用户愿意将自己的个人数据提供给服务提供商,例如医疗机构、银行以及大型的网络企业等。隐私加密保护技?g是防止隐私信息泄露的重要保障,通过对大数据的数据隐私加密算法进行研究,可以对现阶段的数据隐私进行更好的了解和掌握。   1 大数据环境下数据隐私加密保护概述   1) 大数据隐私保护方法   隐私信息一般是指用户不愿公开的与个人敏感事项有关的数据信息,例如,用户的家庭关系、个人教育信息以及工作经历等。这些数据又是由多个元组所组成的,每一个元组又同时包含多个用户属性。用户属性可以按照特征分为以下三类:一是准标识符,需要多个属性进行组合才能共同对用户的信息进行标识,即不能唯一标识一个用户身份的属性,例如,生日、地址等;二是显示标识符,与准标识符相反,它可以标识出一个用户的属性,例如,姓名和证件号码等;三是敏感属性,主要包括用户不愿意公布的信息,包括个人隐私的薪资和健康状况的等。   2) 隐私保护技术   现阶段主要的隐私保护技术主要有三种。   一是基于数据匿名的隐私保护技术,它是通过对数据进行移植和泛化等来对数据进行隐私保护,针对大数据环境下数据的多维多源性和大规模等特征,可以很好的进行针对性的操作。通过分布式计算模型设计以及多线程匿名技术等,大大的提高匿名的效率,起到数据保护的作用,主要的代表性技术有l-diversity 和 t-closeness 等。   二是基于数据失真的隐私保护技术,这种技术可以保证在用户的一些数据的总体特征或者属性不变的情况下对数据进行干扰,干扰的强度与数据失真的强度成正比:数据失真越大,隐私保护强度就越高。传统的有差分隐私保护技术,通过对数据添加噪声来进行隐私保护,但同时也会出现数据可用性较低的情况。   三是基于密码学的隐私保护技术,通过对数据进行加密的方式来保护隐私信息,是现阶段作为流行的一种技术,隐私的保护强度较高。在大数据环境下,数据隐私的加密算法逐渐受到各方面的关注,围绕可加密算法所提出的新理论、新方法和新技术等大大的提高了数据隐私加密的安全性和可靠性。   3) 隐私保护技术的性能评价指标   在大数据环境下的数据隐私加密保护中,数据的存储和计算等都是通过对云服务器来进行处理的,在对大数据的隐私加密技术进行评价时,可以从以下指标来进行测量:   一是隐私保护强度,主要是通过隐私信息泄露的风险1/R来反映的,隐私泄露的风险越小则说明了保护的强度越高。   二是数据的可用性I,这主要是通过对隐私保护技术处理后的数据的缺损来进行反映。数据的缺损性越高,则所代表的数据的可用性就越低。在对数据的可用性进行度量时可运用的指标有分辨率度量DM,数据分类度量CM以及数据信息损失ILOSS等。   三是数据隐私加密的开销成本C,包括数据计算开销,指隐私保护技术处理数据时需占用的计算资源;数据通信开销,指在云计算环境中用户与云端进行数据传输时的通信量;数据存储开销,指云端存储经隐私保护处理户的数据空间大小。具体的原理可由下列公式来说明:      其中E表示隐私保护技术的评价值,α、β、为权重系数,并且通过E整体来评估隐私数据的性能,权重系数可以由用户的具体需求来进行个性化的设定。   2 大数据环境下数据隐私加密算法的提出必要性   随着大数据环境的发展,越来越多的敏感数据被存储在云中,包括电子邮件、私人通信记录以及企业的重要文件等。虽然借助云服务器所提供的高质量数据存储服务为用户使用数据提供了极大的便利;为了方便科学研究或者其他方面的运用,这些服务提供商通常采用私有云、混合云或者公有云的方式进行数据的存储和管理,但是这种方式也会使得用户的个人数据的物理控制权与所有权相分离。对于不经意间将隐私数据上传到不可靠的云服务商来说,增加了隐私被泄露的风险;同时,一些黑客采用数据挖掘等方式来对数据中的隐私进行收集与传播,导致用户的权益得不到

文档评论(0)

manyu + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档