有效解决数据缺失问题的聚集查询算法-计算机工程与应用.PDF

有效解决数据缺失问题的聚集查询算法-计算机工程与应用.PDF

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
有效解决数据缺失问题的聚集查询算法-计算机工程与应用

72 2018 ,54(24 ) Computer Engineering and Applications 计算机工程与应用 有效解决数据缺失问题的聚集查询算法 用 1 1 1 1 1 2 孙 舟 ,田贺平 ,潘鸣宇 ,王伟贤 ,张 禄 ,陈 光 应 1 1 1 1 1 2 SUN Zhou , TIAN Heping , PAN Mingyu , WANG Weixian , ZHANG Lu , CHEN Guang 与 1. 国网北京电力公司,北京 100075 程 2. 南瑞集团,北京 102299 g 1.State Grid Beijing Electric Power Company, Beijing 100075, China r 工 o 2.NARI Group, Beijing 102299, China . 机 j a SUN Zhou, TIAN Heping, PAN Mingyu, et al. Aggregation query processing algorithm for effective solving data 算 e missing problem. Computer Engineering and Applications, 2018, 54 (24 ):72-78. c 计 w. Abstract :Recently, both industrial and academic worlds suffer from the problem of incomplete data. Incomplete data (missing value )significantly reduces the value of data. Existing missing data imputation techniques with high time com- w plexity hardly meet the requirements of real-time applications in the big data era. This paper focuses on how to efficiently w evaluate aggregation queries on incomplete data. Specifically, missing data imputation techniques are integrated with the sample-based approximate query processing. Besides, a block-level sampling strategy is adoptd to speed up the query pro- cessing. All missing values are imputed in the sample and an unbiased estimator of the truth aggregate result is derived. Experiments on both real dataset and synthetic dataset show that the method can produce significant improvements in speed while providing good quality ans

文档评论(0)

fengruiling + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档