基于SVM的图像内容检索研究-电路与系统专业论文.docxVIP

基于SVM的图像内容检索研究-电路与系统专业论文.docx

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于SVM的图像内容检索研究-电路与系统专业论文

ABSTRACTAB ABSTRACT AB STRACT With“interactive systems’’and“human-in-loop”structures.relevance feedback is an important tool to improve the performance of content based image retrieval.It can bridge the semantic gap between high—level concepts and low—level visual features. Especially,SVM based relevance feedback greatly improve the performance of retrieval system with its good generalization. However’the SVM·RF’S performance may become poor because of the following three reasons:1)SVM classifier is unstable with small training samples;2)SVM’S optimal hyper-plane may be biased when the positive feedback samples are much less than the negative feedback samples;31 Over-fitting due to that the feature dimension size is larger than the size of the training set;4)Algorithm’S time cost is strictly limited,as the user takes part in the retrieval process.In response to these problems, this paper carries out the following research: Firstly,the key technologies ofCBIR described and analyzed. Secondly,a new algorithm is proposed.Combining multiple features and training multiple SVM classifiers,it gets a better grasp of image retrieval subjective intent. Thirdly,an asymmetric bagging based fuzzy support vector machine(AB-FSVM) is proposed.An asymmetric bagging is made to negative samples,and then based fuzzy theory and SVM,the retrieval images gotten.This solve the small training samples and samples’asymmetry problems.Besides,with relatively less feature dimension size,over-fitting problems can be eased.Experiments show that compared with existing algorithms,the retrieval performance has been greatly improved with only a slight increase in the time-consuming. Based on the above work,a local database·oriented image retrieval system is built.And the performance ofthe proposed algorithm is verified. Key Words:content based image retrieval(CBIR),relevance feedback(RF),support vector machine(SVM),fuzzy support vector machine(FSVM) 中国科学技术大学学位论文原创性声明本人声明所呈交的学位论文,是本人在导师指导下进行研究工作所取得的成 中

您可能关注的文档

文档评论(0)

131****9843 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档