(2007)A survey of kernel and spectral methods for clustering书籍.pdf

(2007)A survey of kernel and spectral methods for clustering书籍.pdf

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Pattern Recognition 41 (2008) 176–190 /locate/pr A survey of kernel and spectral methods for clustering a ,∗ b a a Maurizio Filippone , Francesco Camastra , Francesco Masulli , Stefano Rovetta aDepartment of Computer and Information Science, University of Genova, and CNISM, Via Dodecaneso 35, I 16146 Genova, Italy bDepartment of Applied Science, University of Naples Parthenope, Via A. De Gasperi 5, I 80133 Napoli, Italy Received 19 October 2006; received in revised form 30 April 2007; accepted 29 May 2007 Abstract Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clus

文档评论(0)

独角戏 + 关注
实名认证
内容提供者

本人有良好思想品德,职业道德和专业知识。

1亿VIP精品文档

相关文档