- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Self-Normalizing Neural NetworksAnd Scaled Exponential Linear UnitsLiu QixuanIntroductionDeep Learning has set new records at different benchmarks CNNs——vision and video tasks RNNs——speech and natural language processingBut FNNs——hard to find success stories, typically shallow, cannotexploit many levels of abstract representationsWhat is SNNs?SNN: Self-Normalizing Neural NetworksHelp to enable high-level abstract representationsThe activation function is “Scaled Exponential Linear Units”(SELUs)Activations close to zero mean and unit variance that are propagated through many network layers will converge towards zero mean and unit variance — even under the presence of noise and perturbations. What can SNNs do?This convergence property of SNNs allows to: train deep networks with many layers employ strong regularization schemes to make learning highly robust A core concept of SNNs?Consider two consecutive layers in a neural network with activation function f The activations x in the lower layer have mean μ and variance νThe activations y = f(wTx) in the higher layer has mean and variance we define n times the mean of the weight vector w Rn as and n times the second moment as There’s a mapping g that maps mean and variance of the activations from one layer the next layer:Normalization techniques ensure a mapping g that keeps (μ, ν) and (, ) close to predefined values, typically (0, 1). Scaled Exponential Linear Units(SELU)Only two design choices are available for adjusting the properties of the function g: (1) the activation function (2) the initialization of the weights. Scaled Exponential Linear Units(SELU)Only two design choices are available for adjusting the properties of the function g: (1) the activation function (2) the initialization of the weights. Scaled Exponential Linear Units(SELU)?For the activation function, we propose “scaled exponential linear units” (SELUs) to render a FNN as self-normalizing.The SELU activation function is given by Deriving the M
文档评论(0)