Finding Frequent Items in Data Streams - School of 寻找数据流中的频繁项学院.pptVIP

Finding Frequent Items in Data Streams - School of 寻找数据流中的频繁项学院.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Finding Frequent Items in Data Streams - School of 寻找数据流中的频繁项学院

Finding Frequent Items in Data Streams Moses Charikar Princeton Un., Google Inc. Kevin Chen UC Berkeley, Google Inc. Martin Franch-Colton Rutgers Un., Google Inc. Presented by Amir Rothschild Presenting: 1-pass algorithm for estimating the most frequent items in a data stream using very limited storage space. The algorithm achieves especially good space bounds for Zipfian distribution 2-pass algorithm for estimating the items with the largest change in frequency between two data streams. Definitions: Data stream: where Object oi appears ni times in S. Order oi so that fi = ni/n The first problem: FindApproxTop(S,k,ε) Input: stream S, int k, real ε. Output: k elements from S such that: for every element Oi in the output: Clarifications: This is not the problem discussed last week! Sampling algorithm does not give any bounds for this version of the problem. Hash functions We say that h is a pair wise independent hash function, if h is chosen randomly from a group H, so that: Let’s start with some intuition… Idea: Let s be a hash function from objects to {+1,-1}, and let c be a counter. For each qi in the stream, update c += s(qi) Realization Claim: For each element Oj other then Oi, s(Oj)*s(Oi)=-1 w.p.1/2 s(Oj)*s(Oi)=+1 w.p. 1/2. So Oj adds the counter +nj w.p. 1/2 and -nj w.p. 1/2, and so has no influence on the expectation. Oi on the other hand, adds +ni to the counter w.p. 1 (since s(Oi)*s(Oi)=+1) So the expectation (average) is +ni. That’s not enough: The variance is very high. O(m) objects have estimates that are wrong by more then the variance. First attempt to fix the algorithm… t independent hash functions Sj t different counters Cj For each element qi in the stream: For each j in {1,2,…,t} do Cj += Sj(qi) Take the mean or the median of the estimates Cj*Sj(oi) to estimate ni. Still not enough Collisions with high frequency elements like O1 can spoil most estimates of lower frequency elements, as Ok. The solution !!! Divide Conquer: Don’

文档评论(0)

wuyoujun92 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档