COP5992 – DATA MINING TERM PROJECT RANDOM …:cop5992–数据挖掘项目随机….pptVIP

COP5992 – DATA MINING TERM PROJECT RANDOM …:cop5992–数据挖掘项目随机….ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
COP5992 – DATA MINING TERM PROJECT RANDOM …:cop5992–数据挖掘项目随机…

COP5992 – DATA MINING TERM PROJECT RANDOM SUBSPACE METHOD + CO-TRAINING by SELIM KALAYCI RANDOM SUBSPACE METHOD (RSM) Proposed by Ho “The Random Subspace for Constructing Decision Forests”, 1998 Another combining technique for weak classifiers like Bagging, Boosting. RSM ALGORITHM 1. Repeat for b = 1, 2, . . ., B: (a) Select an r-dimensional random subspace X from the original p-dimensional feature space X. 2. Combine classifiers Cb(x), b = 1, 2, . . ., B, by simple majority voting to a final decision rule MOTIVATION FOR RSM Redundancy in Data Feature Space Completely redundant feature set Redundancy is spread over many features Weak classifiers that have critical training sample sizes RSM PERFORMANCE ISSUES RSM Performance depends on: Training sample size The choice of a base classifier The choice of combining rule (simple majority vs. weighted) The degree of redundancy of the dataset The number of features chosen DECISION FORESTS (by Ho) A combination of trees instead of a single tree Assumption: Dataset has some redundant features Works efficiently with any decision tree algorithm and data splitting method Ideally, look for best individual trees with lowest tree similarity UNLABELED DATA Small number of labeled documents Large pool of unlabeled documents How to classify unlabeled documents accurately? EXPECTATION-MAXIMIZATION (E-M) CO-TRAINING Blum and Mitchel, “Combining Labeled and Unlabeled Data with Co-Training”, 1998. Requirements: Two sufficiently strong feature sets Conditionally independent CO-TRAINING APPLICATION OF CO-TRAINING TO A SINGLE FEATURE SET Algorithm: Obtain a small set L of labeled examples Obtain a large set U of unlabeled examples Obtain two sets F1 and F2 of features that are sufficiently redundant While U is not empty do: Learn classifier C1 from L based on F1 Learn classifier C2 from L based on F2 For each classifier Ci do: Ci labels examples from U based on Fi Ci chooses the most confidently predicted

您可能关注的文档

文档评论(0)

wuyoujun92 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档