Data Mining - University of Washington数据挖掘-华盛顿大学.pptVIP

Data Mining - University of Washington数据挖掘-华盛顿大学.ppt

  1. 1、本文档共40页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Data Mining - University of Washington数据挖掘-华盛顿大学.ppt

5/19/99 I don’t need a title slide for a lecture Long long ago, in a galaxy far, far away… Outline Background Data mining Association Rules Classification Clustering Sequential Patterns Sequence Similarity Knowledge Discovery in Databases (KDD) What is it? Finding useful patterns in data Why do we need it? Terabytes of data Impractical to manually search for patterns Where does data mining come in? Steps of a KDD process Learn the application domain Create a target dataset Clean and preprocess data Choose type of data mining Pick an algorithm Perform data mining Interpret results Databases vs. Data warehousing Databases vs. Data warehouses Databases provide for: Queries over current data Persistent storage Atomic updates Data warehouses provide for: Storage of all data Meta data Data cleaning, integration Fast access to data Who’s interested? Databases - large amounts of data Artificial Intelligence - search, planning, machine learning Information Retrieval - searching for similar documents Image Processing - finding similar images Types of data mining Association Rules Classification Clustering Sequential Patterns Sequence Similarity Association rules What are they? Looking for common causal relationships in basket data Where are they used? Store layout Catalog design Customer segmentation Association rules example Association rules metrics For a rule a ?b support = a and b occur together in at least s% of the n baskets confidence = of all of the baskets containing a, at least c% also contain b Association rules algorithms Focus on finding support for “itemsets” The na?ve method: Combine itemsets of size k-1 that differ only on the last item to find Candidatesk Measure support of itemsets from step 1 to form large itemsetk Increase k and repeat until no new large itemsets Itemsets of size 1 Finding candidate set 2 Finding candidate set 3 Apriori algorithm An itemset cannot be a large itemset unless all of its subsets are large itemsets Reduces number of

您可能关注的文档

文档评论(0)

zhangningclb + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档