- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
KMeans Clustering Example USC Ustate Facultyk均值聚类样本学院USC北部
K-Means Clustering – Example We recall from the previous lecture, that clustering allows for unsupervised learning. That is, the machine / software will learn on its own, using the data (learning set), and will classify the objects into a particular class – for example, if our class (decision) attribute is tumorType and its values are: malignant, benign, etc. - these will be the classes. They will be represented by cluster1, cluster2, etc. However, the class information is never provided to the algorithm. The class information can be used later on, to evaluate how accurately the algorithm classified the objects. Curvature Texture Blood Consump Tumor Type x1 0.8 1.2 A Benign x2 0.75 1.4 B Benign x3 0.23 0.4 D Malignant x4 . . 0.23 0.5 D Malignant Curvature Texture Blood Consump Tumor Type x1 0.8 1.2 A Benign x2 0.75 1.4 B Benign x3 0.23 0.4 D Malignant x4 . . 0.23 0.5 D Malignant (learning set) With the K-Means algorithm, we recall it works as follows: Example Problem: Cluster the following eight points (with (x, y) representing locations) into three clusters A1(2, 10) A2(2, 5) A3(8, 4) A4(5, 8) A5(7, 5) A6(6, 4) A7(1, 2) A8(4, 9). Initial cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2). The distance function between two points a=(x1, y1) and b=(x2, y2) is defined as: ρ(a, b) = |x2 – x1| + |y2 – y1| . Use k-means algorithm to find the three cluster centers after the second iteration. Solution: Iteration 1 (2, 10) (5, 8) (1, 2) Point Dist Mean 1 Dist Mean 2 Dist Mean 3 Cluster A1 (2, 10) A2 (2, 5) A3 (8, 4) A4 (5, 8) A5 (7, 5) A6 (6, 4) A7 (1, 2) A8 (4, 9) First we list all points in the first column of the table above. The initial cluster centers – means, are (2, 10), (5, 8) and (1, 2) - chosen randomly. Next, we will calculate the distance from the first point (2, 10) to each of the three means, by using the distance function: point mean1
您可能关注的文档
- g06六章拉压.ppt
- GFRC幕墙分工程技术标.doc
- go4900862006度工作总结.doc
- GIS配方施肥上的应用.doc
- Give man a fish高中英语课件.ppt
- Grade literacymalden home级literacymalden回家.doc
- Go816电子围棋.doc
- Grade The Lancashire Grid for Learning Webste年级学习网站兰开夏郡的网格.doc
- Grade 1 Lexington One Literacy home1级列星敦一素养的家.doc
- Grade Welcome o the Learning Services Division of PCSSD级欢迎学习服务部pcssd.doc
- KM MostCited 1 Artificial Intelligence Laboratory Eller 被引用最多的13公里的人工智能实验室的埃勒.ppt
- Knowledge Represenation Cognitive Science at Northwestern知识表示在西北认知科学.ppt
- Knowledge Representation Peoples Education Sociey Best 知识表示人民教育社会最好的.ppt
- Knowledge Reprsentation Dublin Institute of Technology Home知识表示都柏林理工学院家.ppt
- KLYSTRON SMALLSINAL GAINBANDWIDTH …速调管的小信号增益带宽….doc
- Knowledge Capture PartI知识获取部分我.ppt
- Kinmatics Motion in One Dimension在一维运动运动.ppt
- KaluzaKlein excitation of glun胶子的卡鲁扎克莱因激励.ppt
- Kinematic Couplings Pwering Silicon Valley San Jose State 运动学耦合动力硅谷圣若泽州立.ppt
- LA EDUCACON RELIGIOSA COMO PARTE ELEMENTAL DE …洛杉矶教育八哥科莫德单方面的元素….doc
有哪些信誉好的足球投注网站
文档评论(0)