A Linar Subspace Learning Approach via Sparse Coding线性子空间学习方法,通过稀疏编码.pptVIP

A Linar Subspace Learning Approach via Sparse Coding线性子空间学习方法,通过稀疏编码.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
A Linar Subspace Learning Approach via Sparse Coding线性子空间学习方法,通过稀疏编码

A Linear Subspace Learning Approach via Sparse Coding Lei Zhang et al. ICCV’11 7/10/11 Linear subspace learning (LSL) Most LSL methods directly compute statistics of original training sample (image) e.g. PCA, LDA Fail to exploit different contributions of different image components This paper proposed a LSL method by sparse coding and feature grouping The linear subspace can be computed simultaneously by preserving the more informative/discriminative components and suppressing the less informative/discriminative components Problems How to get feature images (components) Sparse coding based on image patches How to group feature images Variance and Fisher ratio How to reduce dimension Eigen value decomposition Flowchart Dictionary learning and sparse coding A patch based dictionary is learned Each patch is summation of k components Each training image is summation of k components: Feature images are concatenation of those Unsupervised subspace learning Feature grouping is based on variance Most discriminative part: Xa Less discriminative part: Xb Subspace learning Seek for a projection matrix P to maximize the energy Ea of Xa while minimizing energy Eb of Xb by solving the following optimization problem: When Sb is not explicitly expressed without sparse coding and feature grouping it reduces to PCA: Supervised subspace learning Feature grouping is based on Fisher ratio Subspace learning In the subspace, maximize between-class scatter matrix while minimizing within-class scatter matrix. Learning criterion is defined as follows: It becomes LDA, when alpha equals 1 without applying sparse coding and feature grouping Results * Each training sample is decomposed into feature images Feature images are grouped into two parts: MDP and LDP Projection is learned based on MDP and LDP , where *

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档