- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
A Linar Subspace Learning Approach via Sparse Coding线性子空间学习方法,通过稀疏编码
A Linear Subspace Learning Approach via Sparse Coding Lei Zhang et al. ICCV’11 7/10/11 Linear subspace learning (LSL) Most LSL methods directly compute statistics of original training sample (image) e.g. PCA, LDA Fail to exploit different contributions of different image components This paper proposed a LSL method by sparse coding and feature grouping The linear subspace can be computed simultaneously by preserving the more informative/discriminative components and suppressing the less informative/discriminative components Problems How to get feature images (components) Sparse coding based on image patches How to group feature images Variance and Fisher ratio How to reduce dimension Eigen value decomposition Flowchart Dictionary learning and sparse coding A patch based dictionary is learned Each patch is summation of k components Each training image is summation of k components: Feature images are concatenation of those Unsupervised subspace learning Feature grouping is based on variance Most discriminative part: Xa Less discriminative part: Xb Subspace learning Seek for a projection matrix P to maximize the energy Ea of Xa while minimizing energy Eb of Xb by solving the following optimization problem: When Sb is not explicitly expressed without sparse coding and feature grouping it reduces to PCA: Supervised subspace learning Feature grouping is based on Fisher ratio Subspace learning In the subspace, maximize between-class scatter matrix while minimizing within-class scatter matrix. Learning criterion is defined as follows: It becomes LDA, when alpha equals 1 without applying sparse coding and feature grouping Results * Each training sample is decomposed into feature images Feature images are grouped into two parts: MDP and LDP Projection is learned based on MDP and LDP , where *
您可能关注的文档
- 2018简约风务通用PPT模板.pptx
- 2018简约风通用商务PT模板.pptx
- 2018简洁渐长阴影商务通用PPT模板.pptx
- 2018欧美时尚装时装画册PPT.pptx
- 2018简风计划总结PPT模板.pptx
- 2018科技感企业介绍总结计划pt模板.pptx
- 2018约科技感年中总结ppt模板.pptx
- 2018通用型商务告PPT模板.pptx
- 2018格子工作汇报PPT模板.pptx
- 2018经典色创意长投影PT模板.pptx
- A LinkedMM for Robust Voicing and Speech Detection链接的HMM鲁棒语音和语音检测.ppt
- A Low Cost Optical Cherence Tomography Machine一种低成本的光学相干断层扫描机器.doc
- A Multi Pradigm Verifiation Flow dave whipp's Home Page多范例verifiation流戴夫惠普的主页.doc
- A Moile Agent Approach to Processbased Dynamic Adaptation of 一种移动代理的方法为基础的动态适应过程.ppt
- A Minimalist Planar Manipulation Computer Science Divisin 极简平面操作计算机科学部.ppt
- A new device driver for a video frame grbber一个视频帧捕获一个新的设备驱动程序.ppt
- A Network Of Virtual Machine Monitors For Caching DynamicContent一种缓存动态内容的虚拟机监视器网络.ppt
- A MultifacetedApproach to Understanding the Botnet Phenomenon为了了解僵尸网络现象的一个多方面的方法.ppt
- A New Paradigm for SLA对二语得的新范式.doc
- A New Paradigm of Learning an Instruction一个新的学习和教学的范式.ppt
最近下载
- 2024—2025学年广东省佛山市顺德区九年级上学期期中考试化学试卷.doc VIP
- 阿托品化与阿托品中毒的主要区别.docx VIP
- 麦克维尔多联机安装说明书.pdf VIP
- Unit 2 Section B(1a-Project)课件人教版2024新教材七年级上册英语.pptx VIP
- 南京大学《算法设计与分析》ppt课件 L12 - DAG.pdf VIP
- 南京大学《算法设计与分析》ppt课件 L11 - GraphTraversal.pdf VIP
- CH_T 7002-2018CN 无人船水下地形测量技术规程.docx
- 生产现场质量问题分析与解决培训.ppt VIP
- SMP-03-005-00 委托生产文件管理规程.pdf VIP
- 南京大学《算法设计与分析》ppt课件 L10 - Union-Find.pdf VIP
有哪些信誉好的足球投注网站
文档评论(0)