第三章 细胞的生物电现象PPT.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第三章 细胞的生物电现象PPT

2 电信号—电压门控离子通道 刺激 细胞膜电位的变化 电 压门控离子通道开放或关闭 离子内流或外流 新信号形成 3机械信号-机械门控离子通道 机械信号(声) 耳蜗毛细胞纤毛弯曲 毛细胞上机械门控离子通道开放 离子跨 膜流动 耳蜗微音器电位 离子通道型受体 离子通道型受体是一类自身为离子通道的受体,即配体门通道(ligand-gated channel)。主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。 神经递质通过与受体的结合而改变通道蛋白的构象,导致离子通道的开启或关闭,改变质膜的离子通透性,在瞬间将胞外化学信号转换为电信号,继而改变突触后细胞的兴奋性。如:乙酰胆碱受体以三种构象存在,两分子乙酰胆碱的结合可以使之处于通道开放构象,但该受体处于通道开放构象状态的时限仍十分短暂,在几十毫微秒内又回到关闭状态。然后乙酰胆碱与之解离,受体则恢复到初始状态,做好重新接受配体的准备。 离子通道型受体分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道,如甘氨酸和γ-氨基丁酸的受体。 生物电现象是以细胞为单位产生的,以细胞膜两侧带电离子的不均衡分布和离子的选择性跨膜转运为基础。 细胞膜的生物电现象主要有两种表现形式,即安静时的静息电位和受刺激时产生的膜电位的改变(包括局部电位和动作电位)。 第二节 细胞的生物电现象 一、静息电位(resting potential) 细胞未受刺激时存在于细胞膜内外两侧的电位差。 极化:静息电位存在时膜两侧所保持的内负外正状态称为膜的极化。 超极化:当静息时膜内外电位差的数值向膜内负值加大的方向变化时,RP由 -70→-90mV ,称为膜的超极化。 去极化(除极化):与超极化相反,膜内电位向负值减少的方向变化,RP由 -70→-50mV 。 复极化:细胞先发生去极化,然后再向正常安静时膜内所处的负值恢复,则称为复极化。 动作电位 : 可兴奋细胞兴奋时细胞内产生的可扩布的电位变化过程。 “全或无”现象:在同一细胞上动作电位大小不随刺激强度和传导距离而改变的现象。 静息电位的测量 (甲)当A、B电极都位于细胞膜外,无电位改变,证明膜外无电位差。 (乙)当A电极位于细胞膜外, B电极插入膜内时,有电位改变,证明膜内、外间有电位差。 (丙)当A、B电极都位于细胞膜内,无电位改变,证明膜内无电位差。 静息电位形成的原理   (1) 细胞膜内、外的离子浓度差 ? 枪乌贼巨轴突细胞膜两侧主要离子浓度 离子 胞浆(mmol/L) 细胞外液(mmol/L) 平衡电位(mV) K+ 400 20 -75 Na+ 50 440 +55 Cl- 52 560 -60 A- 385 - - (2)细胞膜对离子的选择通透性和K+平衡电位 K+外流量与回收(回到胞内)的量达到了动态平衡,K+的跨膜净移动为零,此时膜两侧电位差就稳定在某一不再增大的数值,即静息电位。因其是K+移动达到平衡时的膜电位,又可称作K+平衡电位 。 静息电位的维持机制 钠泵(sodium pump)的活动维持了安静时细胞内外的离子平衡:引起细胞膜上钠泵活动的因素是细胞内Na+的增加和细胞外K+的升高。只要细胞内外的Na+、K+平衡稍有变化,Na+泵就被激活,在泵出胞内多余的Na+的同时,将胞外 多余 的K+泵回,从而维持了细胞内外正常的离子浓度梯度。 二、动作电位及其形成机制   1.动作电位(action potential, AP):指膜受刺激后在原有的静息电位基础上发生的一次膜两侧电位的快速而可逆的倒转和复原。 2.动作电位形成的原理   AP的峰出现超射,即膜电位由静息时的内负外正转变成内正外负,AP的形成不是单纯由于膜对K+通透性发生改变(如仅对K+不再通透,膜电位至多能达到零电位水平),而是受刺激时膜对Na+产生通透的结果。而AP的复极化过程是由于膜重新对K+通透造成的。 3. 动作电位的特点 动作电位刺激强度不随刺激强度增强而增强 动作电位的传导是不衰减的 相继产生的动作电位不能发生重合 失活门 激活门 4. 细胞产生动作电位时的兴奋性变化 兴奋性 阈电位 锋电位 负后电位 正后电位(超极化) 低常期 绝对不应期 相对不应期 超常期 0.5-2 3 12 70 ms 三、动作电位的引起和传导   刺激引起

文档评论(0)

erfg4eg + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档