- 1、本文档共23页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于超分辨率图像的卷积稀疏编码.doc
基于超分辨率图像的卷积稀疏编码
EXPLOITING SPARSENESS IN DEEP NEURAL NETWORKS FOR LARGE VOCABULARY
SPEECH RECOGNITION
Dong Yu 1, Frank Seide 2, Gang Li 2, Li Deng 1
2
Microsoft Research, Redmond, USA Microsoft Research Asia, Beijing, P.R.C
1
{dongyu,fseide,ganl,deng }@
ABSTRACT
Recently, we developed context-dependent deep neural network (DNN)hidden Markov models for large vocabulary speech recogni-tion. While reducing errors by 33%compared to its discriminatively trained Gaussian-mixture counterpart on the switchboard benchmark task, DNN requires much more parameters. In this paper, we report our recent work on DNN for improved generalization, model size, and computation speed by exploiting parameter sparseness. We for-mulate the goal of enforcing sparseness as soft regularization and convex constraint optimization problems, and propose solutions un-der the stochastic gradient ascent setting. We also propose novel data structures to exploit the random sparseness patterns to reduce model size and computation time. The proposed solutions have been evaluated on the voice-search and switchboard datasets. They have decreased the number of nonzero connections to one third while re-ducing the error rate by 0.2-0.3%over the fully connected model on both datasets. The nonzero connections have been further reduced to only 12%and 19%on the two respective datasets without sacri?cingspeech recognition performance. Under these conditions we can re-duce the model size to 18%and 29%,and computation to 14%and 23%,respectively, on these two datasets.
Index Terms —speech recognition, deep belief networks, deep neural networks, sparseness
1. INTRODUCTION
Recently, we have witnessed the resurrection of arti?cialneural net-work (NN)hidden Markov model (HMM)hybrid systems for speech recognition. This mainly attributes to the discovery of the strong modeling ability of deep neural networks (DNNs1) and the availabil-ity of high-speed general purpose graphical processing units (GPG-PUs) for training D
文档评论(0)