MATLAB在结构力学分析中应用.docVIP

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
MATLAB在结构力学分析中应用

MATLAB在结构力学分析中的应用   摘 要:传统的手算方法解超静定结构工作量繁重,有时甚至是不可能,运用结构有限元编程的一般方法,通过两个实例的对照,展示MATLAB在结构力学分析中的应用,MATLAB具有高性能,方法具有普遍的适用性,实现弯矩图自动绘制。    关键词: MATLAB结构有限元弯矩图    Abstract:While using the traditional manual method to resolve complex statically indeterminate structures, it is heavy workloads, sometimes even impossible,using finite element programming of the general method, Based on two examples, This paper introduces a method of application of MATLAB in structure mechanics, MATLAB has the advantages of high performance, it can be applied to many kinds of structures, realization of automatic drawing bending moment diagram.    Key words: MATLAB; Finite element; Bend moment diagram       引言    结构力学[3]中,常利用传统的力法与位移法求解超静定结构,力法是几何问题,位移法把复杂的几何图乘转化为代数运算,但它们基本未知量很多时,系数构成的矩阵计算巨大,两者都不能满足科研工作者的需要。应用MATLAB软件丰富可靠的矩阵运算、数据处理、图形绘制等便利工具,可使得计算和图象一体化。对于结构力学计算是十分有利的工具。    1基本方法    MATLAB结构有限元编程的基本思路是先分后合,即将结构分成各个单元和节点,桁架与刚架已经离散化,对于连续系统这一步极其重要,然后进行单元分析,集成整体刚度矩阵,引入边界条件,最后解方程。在求解平面桁架结构,虽然结构简单,用手算可得各杆件的轴力,但重复的过程太多,现在使用MATLAB语言来编制有限元位移法的程序时,则编程的难度明显降低,对有限元位移法的概念的理解更加深入,编程所需时间也大大减少。    图1为一平面桁架,各杆E=70GPaA=0.004,试用矩阵位移法求解各杆轴力    图1    解:平面桁架元是既有局部坐标又有总体坐标的二维有限元;对各结点和单元进行编号,建立结构坐标系( 图1 )   第一步,利用MATLAB函数   y=Plane Truss Element Length(x1, y1, x2, y2)    L=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)); % 局部坐标中杆件长度   第二步, MATLAB函y=Plane Truss Element Stiffness(E ,A ,L ,theta)   x=theta*pi/180; C= cos (x); S=sin(x);   y=E*A/L*[C*C C*S -C*C -C*S; C*S S*S -C*S -S*S;-C*C -C*S C*C C*S;-C*S -S*S C*S S*S];% 总体坐标中建立各单元的刚度 矩阵   第三步,建立整体刚度阵。该结构有4个节点,每个节点有两个自由度(可考虑支座沉降),为了得到整体刚度阵K,首先利用生成一个8×8的0矩阵,因为该结构有4个单元,所以4次调用M a t lab的Plane Truss Assemble函数;其中K为整体刚度阵, k为单元刚度阵, i j为单元两端在整体节点上的编号。   y=Plane Truss Assemble (K, k, i , j)   K (2*i-1, 2*i-1) =K (2*i-1, 2*i-1) +k (1, 1);   K (2*i-1, 2*i) =K (2*i-1, 2*i) + k (1, 2);   K (2*i-1, 2*j-1) = K (2*i-1, 2*j-1)+ k (1,3);   K (2*i-1, 2*j) =K (2*i-1, 2*j) +k (1, 4);   K (2* i , 2*i-1) =K (2* i, 2*i-1) +k (2, 1);   K (2*i, 2*i) =K (2*i, 2*i) +k (2, 2);   K (

文档评论(0)

317960162 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档