- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
微型电动车车室气流流场和温度场的数值模拟
微型电动车车室气流流场和温度场的数值模拟 作者:佚名??来源:不详??发布时间:2008-2-29 16:39:29??发布人:admin 减小字体 增大字体 随着节能和环保问题的日益严峻,电动汽车成为“21世纪绿色环保汽车”。汽车公司也逐渐开始电动车的研制,车室内舒适性的研究也越来越重要。室内流场和温度场研究的重要性引起世界各大汽车公司的广泛关注,通用、福特、日产及克莱斯勒等积极开展这一领域的研究。车内的舒适性与气流流场和温度场有密切关系,合理的气流组织可使驾驶员或乘员获得合适的温度范围及新鲜的空气,从而降低驾驶员和乘员的旅途疲劳。而车室内物理结构及外界环境直接影响室内的温度场与空气速度场的分布,因此,进行汽车室内空气流场的数值模拟研究,通过数值计算方法研究复杂几何边界形状、复杂热边界条件,以及小空间强迫对流、自然对流、辐射同时存在的复杂流动与传热问题,具有重要意义。本文采用稳态不可压缩N-S雷诺时均方程,用湍流涡粘度模型处理雷诺应力项,方程的封闭采用高雷诺数K-∈模型,采用贴体坐标,应用整体法计算空调车室内气固耦合传热问题,并考虑了太阳辐射对温度场和强迫对流对空气流场的影响,对微型电动车空调车室内的三维空气流场和温度场的分布进行数值模拟研究。一、物理模型微型电动汽车室内物理结构复杂,其几何参数为:车室内长2.8m,车室内宽1.3m,车室内净高1.6m;有两排座椅,其布置如图1所示。座椅成100°夹角,前挡风玻璃与竖直面成45°夹角;送风口布置在前面板上,有三个送风口,回风口有两种布置方式。方案一和方案二的区别只是回风口的布置方式不同,本文只给出方案一的车室布置简图。 方案一:回风口布置在汽车前端;方案二:回风口布置在汽车后端。二、数学模型由于车室周围均受到太阳辐射和外界空气的影响,采用稳态不可压缩N-S雷诺时均方程,用湍流涡粘度模型处理雷诺应力项,方程的封闭采用高雷诺数K-∈模型。为了简化问题,做如下假设:1.车室内空气为不可压缩且符合Boussinesq假设;2.流动为稳态紊流;3.忽略固体壁面间的热辐射;4.车室内空气为辐射透明介质;5.空调车室密封性能好,没有空气泄漏。则空调车室内空气的三维流动与传热的微分方程包括:连续方程、动能方程、能量方程和K-∈方程。空调车室内空气的三维流动与传热的微分方程为: 靠近壁面粘性支层内,流动和换热计算采用壁面函数法,靠近壁面不划分网格,把第一个与壁面相邻的节点布置在旺盛湍流区域内。三、边界条件(1) 入口边界:在送风口处施加送风速度和送风温度条件:u=uin, T=Tin;(2) 出口边界:回风口施加相对压力为零;(3) 壁面边界:车室外壁面T=Tw,日照表面综合温度Tw。 式中I—太阳辐射强度a—对流热换系数车顶及车两侧壁面、车室地板、前后挡风玻璃、仪表板等固定壁面而取无滑移边界条件。其余边界取流线不穿透条件。(4)热源边界:利用MonteCarlo方法计算车室内壁面由太阳辐射引起的附加源项。MonteCarlo方法应用于辐射传递的计算不仅可以避免复杂的数学运算,而且非常适用于计算非理想、非均匀、结构繁杂的空间辐射表面之间的辐射传递。模拟空调车室内太阳照射辐射传递过程时,认为车室内空气是辐射的透明介质,且不考虑车室内各表面的发射热辐射,各表面的温度恒定且吸收率保持不变,物性均匀,除玻璃窗之外车室内其余各表面均视为漫射灰表面。(5)在模型内边界,即流体(空气)与非流体(固体区域)交界面,不能施加热流密度和对流边界条件,因为在这交界面的参数是未知的,是正需要求解的。因此气固交界面上流体流动符合无滑移条件即ui=0,固体壁面温度按绝热条件计算。四、数值计算方法由于车厢体和座椅等的形状复杂,所以有许多复杂的区域及其边界不可能与现有的各种坐标正好相符,故采用贴体坐标系对车室结构进行离散,三维网格总数为286546。如图2所示。 采用有限单元法和交错网格离散控制微分方程,应用SIMPLEF算法求解离散方程:(1)采用二阶迎风差分格式,将扩散项和对流项的影响系数分离开来,使方程绝对稳定;(2)把相邻节点的影响系数表示成对流分量与扩散分量之和,将对流部分归并入源项。(3)对速度、压力项的求解采用TDMA法,以使各项迭代收敛。五、结果分析本文对微型电动车空调车室内的三维空气流场与温度场进行数值计算,获得的结果比较理想。图3和图5为Z=0.5平面内的速度场分布图,图3为回风口前置方式,图5为回风口后置方式。图4和图6为Z=0.5平面内的温度场分布图,图4为回风口前置方式,图6为回风口后置方式。 回风口的布置方式对室内速度场和温度场的分布产生影响。从图中可以看出,空调车室内上部区域流速较大,下部区域
文档评论(0)