应用灰色关系集群和CGNN分析矿井深部巷道围岩的稳定性控制 毕业论文外文翻译精选.docVIP

应用灰色关系集群和CGNN分析矿井深部巷道围岩的稳定性控制 毕业论文外文翻译精选.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
应用灰色关系集群和CGNN分析矿井深部巷道围岩的稳定性控制 毕业论文外文翻译精选

英文原文 Application of Grey Relational Clustering and CGNN in Analyzing Stability Control of Surrounding Rocks in Deep Entry of Coal Mine Wanbin YANG 1, Zhiming QU2 (1.Beijing University of Science and Technology, Beijing, 100083; 2. Hebei University of Engineering, Handan, 056038) Abstract—With combination of grey neural network (CGNN) and grey relational clustering, the models are constructed, which are used to solve the prediction and coMParison of surrounding rocks stability controlling parameters in deep entry of coal mine.The results show that grey relational clustering is an effective way and CGNN has perfect ability to be studied in a short-term prediction. Combined grey neural network has the features of trend and fluctuation while combining with the time-dependent sequence prediction. It is concluded that great improvements coMPared with any methods of trend prediction and simple factor in combined grey neural network is stated and described in stably controlling the surrounding rocks in deep entry. I. INTRODUCTION GREY system technology states the uncertainty of small sample and poor information. With the development and generation of the unknown information, the real world will be discovered and the system operation behavior will be mastered properly. Through original stability with the pre-processing, the grey system law will be described. Though the real world is expressed complicatedly and the satisfied irregularly, the integrated functions will be appeared as a certain inner regular pattern [1]. The studying of grey system technology is based on the poor information which is generated by parts of the known information to extract valuable stability and to properly recognize and effectively control the system behavior. The neural network is dependent on its inner relations to model, which is well self-organized and self-adapted. The neural network can conquer the difficulties of traditionally quantitative prediction and avoid the disturbance of man’s m

文档评论(0)

bodkd + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档